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Abstract

We analyse the emergent dynamics of the so called majority voter model evolving
on complex networks. In particular we study the influence of three characteristic
types of networks, namely Random Regular, Erdös-Rényi (ER), Watts and Strogatz
(WS, small-world) and Barabasi (scale- free) on the bifurcating stationary coarse-
grained solutions. We first prove analytically some simple properties about the
symmetry and symmetry breaking of the macroscopic dynamics with respect to the
network topology. We also show how one can exploit the Equation-free framework to
bridge in a computational strict manner the micro to macro scales of the dynamics of
stochastic individualistic models on complex random graphs. In particular, we show
how systems-level tasks such as bifurcation analysis of the coarse-grained dynamics
can be performed bypassing the need to extract macroscopic models in a closed
form. A comparison with the mean-field approximations is also given illustrating the
merits of the Equation-Free approach, especially in the case of scale-free networks
exhibiting a heavy-tailed connectivity distribution.
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1 Introduction

Social-like mimetic behavior - otherwise described as trend following or majority-voter or
majority-rule- has been, over the last century, a key factor in determining and shaping
economical and political changes around the world [20, 45, 23]. Taking as an example
decision making, it has been demonstrated that the mimetic behavior of individuals may
significantly affect rational decisions under incomplete information [39, 37, 49, 16]. Iden-
tifying and understanding collective actions from such phenomena has therefore been an
important research task for psychologists, sociologists and economists. Over the years,
scientists have extensively used this mechanism to model and gain a better understanding
on the behavior of opinion formation and voter/election dynamics [8, 19, 48, 7, 32, 33]
culture and language dynamics [11, 3, 6, 10, 35], crowd flow design and management
[18, 21, 17, 40], diffusion of news and innovations [15, 34, 51],but also epidemic spread
dynamics [5, 4, 13, 28, 27, 42] ecology [24] and neuroscience [31, 46, 47]. Given the nature
of the process, it is clear that the network topology, on which the interaction of the indi-
viduals evolves, can shape the emergent macroscopic dynamics. However, it is less clear
how one can quantify in a systematic manner the dependence of the emergent dynamics
with respect to both network characteristics and model parameters. Due to the nonlinear,
stochastic nature of such models and their coupling to complex network structures, the
emergent behavior cannot be-most of the times-accurately modeled and analyzed in a
straightforward manner.

While one can try to use the tools of statistical physics to write down coarse-grained
master equations to describe the probabilistic time evolution of the macroscopic quantities
for simple-structured homogeneous networks (in the sense that there is a constant degree
connectivity and/or that the structure is poorly clustered), major problems arise in trying
to find fair- or perform computations based on- macroscopic models in a closed form
when dealing with complex heterogeneous networks (such as scale-free type of networks)
[50, 1, 38]. This imposes a major obstacle to systems-level computational tasks, such
as bifurcation and stability analysis which rely on the availability of efficient low-order
closed models written in terms of a few macroscopic (coarse-grained) variables. Hence,
being able to systematically analyze the dynamics of majority-voter processes on complex
networks becomes, in this context, of great importance.

Here, our main focus is to systematically explore the dynamics of the basic majority-
voter process deploying on complex networks. We first prove analytically some symmetry
properties of the corresponding mean field models. We then show how the network struc-
ture induces symmetry breaking of the system solutions giving rise to hysteresis phenom-
ena. Asymmetric behavior predicted by detailed network models has been observed in
many real-world complex problems. In particular, symmetry breaking of majority-voter
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processes has been related to phenomena such as herd behavior under panic [2], the emer-
gence of cooperation dynamics [41] and public opinion formation [22]. Finally, in order
to systematically analyse the way symmetry breaking influences the emergent dynamics
we exploit the Equation-Free framework [29, 14, 44, 36] bypassing the construction of
explicit coarse-grained models. In particular, we construct the coarse-grained bifurcation
diagrams and perform a stability analysis of the basic majority-rule dynamics evolving on
complex networks, with respect to (a) model’s switching-state probability and (b) to the
underlying degree distribution. We should note that this is the first time that such an
analysis is provided using the detailed stochastic model in an explicit manner, i.e. bypass-
ing the need to construct mean-field approximations. A comparison with the mean field
approximations is also demonstrated, to reveal the merits of the proposed framework. In
particular in the case of scale-free structures even if one manages to extract exact mean
filed approximations, we show that bifurcation analysis, based on the corresponding an-
alytical mean field approximation, appears to be an overwhelming difficult task, due to
the heavy tail power-law connectivity distribution.

The paper is organized as follows. In section 2 we describe the majority-voter model
deploying on a network while in section 3 we prove analytically how the connectivity de-
gree of random graphs governs the symmetry and the symmetry breaking of the solutions
of the corresponding mean field models. In section 4 we derive the mean field approxima-
tion of the majority-voter model in the case of complex networks with arbitrary degree
distributions. In section 5, we show how the Equation-free framework can be exploited
to perform systems level tasks on complex networks. In section 6 we present the results
of the coarse-grained numerical analysis, constructing the coarse-grained bifurcation dia-
grams of the majority-voter dynamics as these obtained by exploiting the Equation-free
approach on complex networks. A comparison with the bifurcation diagrams obtained
using the mean field approximations is also made. We conclude in section 7.

2 The discrete stochastic majority-voter model

In our simple basic majority-voter model [31, 46, 47], each individual is labeled as i,
(i=1,2,...,N ), which votes for “A” or “B”. Hence, the state of the i-th individual in time
is described with the function ai(t) ∈ {0, 1}, where the values 1 and 0 corresponds to “A”
and “B” selection respectively. Let us denote by Λ(i) the set of the neighbors (i.e. the
individuals connected to i-th individual, with self loop included). The summation

σi(t) =
∑

j∈Λ(i)

ai(t) (1)

gives the number of individuals socially linked with the i -th individual voting for “A”.
At each time step each individual is influenced by its social interactions, and changes its
preference according to the following simple stochastic rules:

1. A “B” voter changes its preferences to “A” with probability ε, if σi(t) ≤
(

ki

2

)

(where

ki is the degree of the i − th individual). If σi(t) >
(

ki

2

)

the individual keeps changes its
preferences to “A” with probability 1 − ε.
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Figure 1: An example of the majority-voter rules. The open circle represents a “B” voter,
while the filled circle represents an “A” voter (a). pB→A = 1−ε, since σ(t) =

∑10
j=1 aj(t) =

6 > degree(i)/2. Here degree(i)=10 (self loop is included). (b) Similar, pA→B = 1 − ε,
since σ(t) =

∑6
j=1 aj(t) = 2 < degree(i)/2.

2. An individual with a preference “A” changes its preference to “B” with probability
ǫ, if σi(t) >

(

ki

2

)

. If σi(t) ≤
(

ki

2

)

, the individual changes its preference to B with proba-
bility 1− ε. The probability ε ranges in (0, 0.5). We illustrate the operation of the above
rules in Fig. 1.

3 Symmetry and symmetry breaking of the solutions

of the mean-field majority-voter model evolving on

random regular networks (RRN)

In the following section we prove some simple but important properties of the majority-
voter dynamics evolving on random regular networks.

3.1 RRN with an odd connectivity distribution

For our analysis we start by considering a random network with constant, odd, connec-
tivity degree: k = 2l−1 and l ∈ N (self loop is included). In this case, the time evolution
of the density of A voters is given by the equation

dt+1 = f2l−1(dt) (2)

where the function f2l−1 takes the form

f2l−1(d, ε) = (1 − ε)(

(

2l − 1

0

)

d2l−1 +

(

2l − 1

1

)

d2l(1 − d) + ... +

(

2l − 1

l − 1

)

dl(1 − d)l−1)+

+ ε(

(

2l − 1

l

)

dl−1(1 − d)l +

(

2l − 1

l + 1

)

dl−2(1 − d)l+1 + ... +

(

2l − 1

2l − 1

)

(1 − d)2l−1)

(3)

In this case, the following proposition holds:
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Proposition 3.1.1. Let (G, E) be a network with constant odd connectivity k = 2l − 1,
l ∈ N . Then the fixed point solutions of equation (2) for a constant ε are symmetric with
respect to d = 1/2.

Proof. We shall prove that if d0 is a solution of Eq. (2), then 1 − d0 is also a solution.
The function f2l−1, Eq. (3) can be written in a more compact form

f2l−1(d, ε) = (1 − ε)
l−1
∑

i=0

(

2l − 1

i

)

d2l−1−i(1 − d)i + ε
2l−1
∑

i=l

d2l−1−i(1 − d)i (4)

Eq. (4) can be put in the following form

f2l−1(d, ε) = (1 − ε)f1,2l−1(d) + εf2,2l−1(d) (5)

where

f1,2l−1(d) =

l−1
∑

i=0

(

2l − 1

i

)

d2l−1−i(1 − d)i (6)

and

f2,2l−1 =
2l−1
∑

i=l

(

2l − 1

i

)

d2l−1−i(1 − d)i. (7)

The fixed point solutions of Eq. (2) are derived from

d = f2l−1(d, ε) ⇔ d − f2l−1(d, ε) = 0 ⇔ G2l−1(d, ε) = 0 (8)

and
G2l−1(d, ε) = d − f2l−1(d, ε) (9)

Any solution d0 of Eq. (8)satisfies

d0 = f2l−1(d0, ε) ⇔ d0 = (1 − ε)f1,2l−1(d0) + εf1,2l−1(d0) (10)

Remark 3.1.2. f1,2l−1(1 − d) = f2,2l−1(d) and f2,2l−1(1 − d) = f1,2l−1(d)

Proof.

f1,2l−1(1 − d) =
l−1
∑

i=0

(

2l − 1

i

)

(1 − d)2l−1−idi =

(

2l − 1

0

)

(1 − d)2l−1

+

(

2l − 1

1

)

(1 − d)2l−1−1d + ... +

(

2l − 1

l − 1

)

(1 − d)ldl−1

It is known that
(

n

k

)

=
(

n

n−k

)

for 0 ≤ k ≤ n hence

f1,2l−1(1 − d) =

(

2l − 1

2l − 1

)

(1 − d)2l−1 +

(

2l − 1

2l − 2

)

(1 − d)2l−2d+

... +

(

2l − 1

l

)

(1 − d)ldl−1 =
2l−1
∑

i=l

(

2l − 1

i

)

d2l−1−i(1 − d)i

= f2,2l−1(d)
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Remark 3.1.3. f1,2l−1(d) + f2,2l−1(d) = 1

Proof.

f1,2l−1(d) + f2,2l−1(d) =
l−1
∑

i=0

(

2l − 1

i

)

d2l−1−i(1 − d)i +
2l−1
∑

i=l

(

2l − 1

i

)

d2l−1−i(1 − d)i

=

2l−1
∑

i=0

(

2l − 1

i

)

d2l−1−i(1 − d)i = (d + 1 − d)2l−1 = 12l−1 = 1 (11)

Putting in the expression of G, Eq. (8), d0 → 1 − d0 we get

G2l−1(1−d0, ε) = 1−d0−f2l−1(1−d0, ε) = 1−d0−(1−ε)f1,2l−1(1−d0)−εf2,2l−1(1−d0) (12)

Substituting the expression of d0 from Eq. (10) in Eq. (12) we get

G2l−1(1 − d0, ε) = 1 − (1 − ε)f1,2l−1(d0) − εf2,2l−1(d0)−

(1 − ε)f1,2l−1(1 − d0) − εf2,2l−1(1 − d0)

(13)

and by remark 3.1.2

G2l−1(d0, ε) = 1 − (1 − ε)f1,2l−1(d0) − εf2,2l−1(d0)−

(1 − ε)f2,2l−1(d0) − εf1,2l−1(d0) = 1 − (f1,2l−1(d0) + f2,2l−1(d0)) = 1 − 1 = 0

Proposition 3.1.4. For each ε, and for constant odd connectivity there is always the
solution d0 = 1

2
.

Proof.

G2l−1(
1

2
, ε) =

1

2
− f2l−1(

1

2
, ε) =

1

2
− (1 − ε)f1,2l−1(

1

2
) − εf2,2l−1(

1

2
) (14)

from remark 3.1.2, putting d = 1
2

we get that

f1,2l−1(
1

2
) = f2,2l−1(

1

2
) (15)

therefore

G2l−1(
1

2
, ε) =

1

2
− (1 − ε + ε)f1,2l−1(

1

2
)

=
1

2
− f1,2l−1(

1

2
) =

1

2
−

l−1
∑

i=0

(

2l − 1

i

)

1

2

2l−1−i

(
1

2
)i =

=
1

2
−

l−1
∑

i=0

(

2l − 1

i

)

(
1

2
)2l−1 =

1

2
− (

1

2
)2l−1

l−1
∑

i=0

(

2l − 1

i

)

=

=
1

2
− (

1

2
)2l−122l−2 =

1

2
−

1

2
= 0 (16)
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Figure 2: Bifurcation diagram of the density of “A” voters with respect to the switching
probability ε, as constructed using the mean field approximation of the majority-voter
dynamics evolving one a RRN with a constant degree distribution equal to 5 (as produced
using Eq. (8)).

Fig. 2 gives the bifurcation diagram for a random network with constant connectivity
degree equal to 5 (self loop is included), resulting from Eq. 8. Clearly there are two
branches of symmetric solutions around the steady solution d0 = 1

2
.

Now suppose that the network has a degree distribution P (k) containing only odd
degrees. Specifically, let us assume that the network has N1 nodes with a degree equal
to 2l1 − 1, N2 nodes with a degree equal to 2l2 − 1,..., Nk nodes with degree equal to
2lk − 1, (N1 + N2 + ... + Nk = N and li ∈ N, i = 1, 2, ...k) . The time evolution of the
density can be split into sums of conditional probabilities of specific degrees:

dt+1 = ftot(dt, ε) (17)

and

ftot(dt, ε) =

k
∑

i=1

f2li−1(d, ε)P (2li − 1) (18)

The fixed point solution of Eq. (17) is

d = ftot(d, ε) ⇔ d − ftot(d, ε) = 0 ⇔ Gtot(d, ε) = 0 (19)

Now we will prove the following

Proposition 3.1.5. Let (G, E) be a network with a degree distribution containing only
odd dergees Then the fixed point equation, Eq. (19), for a constant ε, has symmetric
solutions with respect to d = 1/2.

Proof. Suppose that d0 is a solution of Eq. 19. Then

d0 =

k
∑

i=1

f2li−1(d0, ε)P (2li − 1) (20)
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From the proof of proposition 3.1.1 we have that for each i, (i = 1, 2, ..., k) the function
f2li−1 can be written as a convex combination of two other functions f1,2li−1 and f2,2li−1

(Eq. 5) i.e.

f2li−1(d, ε) = (1 − ε)f1,2li−1(d) + εf2,2li−1(d) (21)

By remark 3.1.2 we have

f1,2li−1(1 − d) = f2,2li−1(d) (22)

and

f2,2li−1(1 − d) = f1,2li−1(d) (23)

Now we set d0 → 1 − d0 in the function Gtot Eq. (19) to get

Gtot(1 − d0, ε) = 1 − d0 − ftot(1 − d0, ε) = 1 − d0 −
k

∑

i=1

f2li−1(1 − d0, ε)P (2li − 1) =

= 1 − d0 −

k
∑

i=1

((1 − ε)f1,2li−1(1 − d0) + εf2,2li−1(1 − d0))P (2li − 1) (24)

Substituting Eq. (20) in Eq. (24) we get that:











































Gtot(1 − d0, ε) = 1 −
∑k

i=1 f2li−1(d0, ε)P (2li − 1)

−
∑k

i=1((1 − ε)f1,2li−1(1 − d0) + εf2,2li−1(1 − d0))P (2li − 1)

= 1 −
∑k

i=1((1 − ε)f1,2li−1(d0) + εf2,2li−1(d0))P (2li − 1)

−
∑k

i=1((1 − ε)f1,2li−1(1 − d0) + εf2,2li−1(1 − d0))P (2li − 1)

= 1 −
∑k

i=1((1 − ε)f1,2li−1(d0) + εf2,2li−1(d0)
+(1 − ε)f2,2li−1(d0) + εf1,2li−1(d0))P (2li − 1)

= 1 −
∑k

i=1(f1,2li−1(1 − d0) + f2,2li−1(1 − d0))P (2li − 1)

(25)

Taking into account that f1,2li−1(d)+f2,2li−1(d0) = 1 and
∑k

i=1 P (2li−1) = 1, the last
expression of Eq. (25) reads:

Gtot(1 − d0, ε) = 1 −

k
∑

i=1

(f1,2li−1(1 − d0) + f2,2li−1(1 − d0))P (2li − 1) =

= 1 −
k

∑

i=1

P (2li − 1) = 1 − 1 = 0 (26)

Fig. 3 gives the bifurcation diagram for a random network with the degree distribution
contains only odd degrees, resulting from Eq. (19). The two branches of symmetric
solutions around the steady solution d0 = 1

2
still exist.
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Figure 3: Bifurcation diagram of the density of “A” voters with respect to the switching
probability ε, as constructed using the mean-field approximation of the majority-voter
dynamics evolving on networks containing only odd degrees (here 5, 7, 9) (as produced
using Eq. (18), (19)).

3.2 RRN with even connectivity distribution

In the general case of a network (G, E) with arbitrary even constant connectivity degree,
the time evolution of the density reads:

dt+1 = f2l(dt, ε) (27)

with

f2l(d,ε) = (1 − ε)

l−1
∑

i=0

(

2l

i

)

d2l−i(1 − d)i + ε

2l
∑

i=l

(

2l

i

)

d2l−i(1 − d)i (28)

Eq. (28) can be written as

f2l(d,ε) = (1 − ε)f1,2l(d) + f2,2l(d) + ε

(

2l

l

)

dl(1 − d)l (29)

where f1,2l(d) =
∑l−1

i=0

(

2l

i

)

d2l−i(1− d)i and f2,2l(d) =
∑l−1

i=0

(

2l

i

)

d2l−i(1− d)i. Similar to the
proof of remark 3.1.2, the two parts f1,2l(d)f2,2l(d), are symmetric with respect to d = 1

2
.

Due to the perturbation term ε
(

2l

l

)

dl(1− d)l the function loses its symmetry, resulting to
the symmetry breaking of the corresponding bifurcation diagram of Eq. (27), (Fig. 4).

4 The mean field majority-voter model dynamics in

networks with arbitrary degree distribution

In order to extract the mean field approximation for complex networks with arbitrary
degree distributions, we choose at random a node i. Let k be the degree of the i -th node



10 K. G. Spiliotis, C. I. Siettos and L. Russo

Figure 4: Bifurcation diagram of the density of A voters with respect to the switching
probability, as constructed using the mean field approximation of the majority-voter dy-
namics evolving on a RRN with constant degree distribution equal to 8 (as produced
using Eq. (28) and the fixed point solution of Eq. (27)).

and dt be the density of A voters on the network at time t. Then, the probability of the
i -th individual (with degree k) to have a preference A at the next time step t + 1 is

fk(dt, ε) =

k
∑

n=0

a(k, ε)

(

k

n

)

dk−n
t (1 − dt)

n (30)

where a(k, ε) =

{

ε, ifn ≤ kmax

2

1 − ε, else
. Let f(dt, ε) be the probability at time t + 1 a randomly

chosen zero node, to become one. Then

f(dt, ε) =

kmax
∑

k=1

fk(dt, ε)P (k) (31)

where P (k) be the connectivity degree distribution. The time evolution of the switching
probability reads

dt+1 = f(dt, ε) (32)

For the computation of the stationary points one has to solve the following fixed-point
equation:

d − f(d, ε) = 0 ⇔ G(d, ε) = 0 (33)

For complex networks with a high heterogeneity in the connectivity distribution (such as
scale free networks) the fixed point solution of Eq. (33), given Eq. (30) and Eq(31) may
become a non-trivial computational task as for a degree distribution with heavy nodes
one needs to compute polynomial coefficients of the order of

(

k

n

)

.
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5 The Equation-free approach for multi-scale com-

putations on complex heterogeneous networks

For detailed individualistic/ stochastic models whose dynamics deploy on heterogeneous
networks, the derivation of explicit efficient macroscopic representations for the emer-
gent dynamics in a closed form is most of the times an overwhelming difficult task. The
Equation-free approach can be used to bypass the need for extracting explicit continuum
models in closed form [29, 14, 44, 36, 30, 43, 25]. The key assumption of the methodol-
ogy is that a macroscopic model for the emergent dynamics exists and closes in terms of
a few coarse-grained variables. These coarse-grained variables are usually the low-order
moments of the detailed evolving distribution over the networks. What the methodology
does, in fact, is to provide closures on demand in a computational manner. The method-
ology can be described by the following steps (see also Fig. 5):
(a) Choose the coarse-grained statistics, say x, for describing the emergent behavior of
the system and an appropriate representation for them (for example the mean value of
the underlying evolving distribution).
(b) Choose an appropriate lifting operator µ that maps to a detailed distribution U on
the network. (For example, µ could make random state assignments over the network
which are consistent with the densities).
(c) Prescribe a continuum initial condition at a time tk, say, xtk .
(d) Transform this initial condition through lifting to N consistent individual-based real-
izations Utk = µxtk .
(e) Evolve these N realizations for a desired time T , generating the Utk+1

, where tk = kT .
(f) Obtain the restrictions xtk+1

= ℵUtk .
The above steps, constitute the so called coarse timestepper, which, given an initial coarse-
grained state of the system xtk at time tk reports the result of the integration of the model
over the network after a given time-horizon T (at time tk+1), i.e.

xtk+1
= ΦT (xtk ,p). (34)

where ΦT : Rn × Rm → Rn having xk as initial condition.

The existence of a coarse-grained the temporal evolution operator, ΦTh
, which is as-

sumed to be unavailable analytically in a closed form, implies that the higher order mo-
ments of the distributions become, relatively quickly, slaved to the lower, few, slow ones.

At this point one can implement around the coarse-grained input-output map Eq.
(34), a fixed point iterative scheme order to compute fixed point or periodic solutions at
certain values of the parameter space. For example for low-order systems coarse-grained
equilibria can be obtained as fixed points, of the map :

x − ΦT (x,p) = 0. (35)
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Figure 5: Schematic description of the concept of the Equation-Free approach.

6 Coarse-Grained Numerical analysis using the Equation-

free approach

The results are obtained using networks of N = 10000 individuals. We performed a
coarse-grained analysis for ER, WS and scale-free networks [1, 12, 50, 38]. The coarse-
grained bifurcation diagrams, with respect to the switching probability parameter ε, were
constructed exploiting the Equation-free framework as described in the previous section.
Our coarse-grained variable is the density d of the A voters. At time t0, we created Ncopies

different distribution realizations consistent with the macroscopic variable d . The coarse
timestepper is constructed as the T -map:

dt+1 = ΦT (dt, ε) (36)

The derived coarse-grained bifurcation diagrams are depicted in Fig. 6-8 respectively.
The stationary states on the coarse-grained bifurcation diagram have been obtained as
fixed points of Eq. (35) averaging over Ncopies = 10000 realizations. Continuation around
the coarse-grained turning points is accomplished by solving the Eq. (35) augmented by
the pseudo-arc-length continuation, i.e.:

{

G(d, ε) = d − Φ(d, ε) = 0
N(D, ε) = a(d − d1) + b(ε − ε1) − ds = 0

(37)

where a = d1−d0

ds
and b = ε1−ε0

ds
and is the pseudo arc-length continuation step. The ordered

pairs (d0, ε0) and (d1, ε1) are two already computed solutions. The computation of the
fixed points can now be obtained using an iterative procedure like the Newton-Raphson
technique.The procedure involves the iterative solution of the following linearized system:

[

1 − ∂ΦT

∂d
−∂ΦT

∂ε

a b

] [

δd
δε

]

=

[

d − ΦT (d, ε)
N(d, ε)

]

(38)
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Figure 6: Coarse-grained bifurcation diagram of the density of “A” voters with respect
to the switching probability ε, using the detailed majority-voter simulator evolving on an
Erdös-Rényi network constructed with connectivity probability p = 0.0008, adding, self
connection for each node. Solid lines correspond to the coarse-grained stable states while
the dotted lines correspond to unstable ones. The inset depicts the computed eigenvalue
λ, determining the systems, coarse grained stability.

Note that for the calculation of the Jacobian ∂ΦT

∂d
and ∂ΦT

∂ε
, no explicit macroscopic

evaluation equation are needed. They can be approximated numerically by calling the
black-box coarse timestepper at appropriately perturbed values of the corresponding un-
knowns (d, ε). The above framework enables the microscopic simulator to converge to
both coarse-grained stable and unstable solutions and trace their locations [25]. The
eigenvalues (here is just one) of the Jacobian ∂ΦT

∂d
determine the local stability of the

stationary solutions: a fixed point is stable when the modulus of all eigenvalues is smaller
than one and unstable if there exists at least one eigenvalue with modulus greater than
one.

Each bifurcation diagram consists of two families of solutions. One family of solutions
is characterized by a saddle node bifurcation: the high density state (where the majority of
individuals vote for A) bifurcates through a turning point (found at ε = 0.2207, ε = 0.1869
and ε = 0.1641, for the networks of ER (Fig. 6), WS (Fig.7) and Barabasi (Fig.8)
respectively), marking the change in the stability. The second family of low density states
(where the majority of B voters), is stable for all values of ε for all the networks.

In Figs. 9, 10 we also show the bifurcation diagrams obtained using the mean field
approximations as these are derived from Eq.(30),(31) and (33) using the ER and WS
degree distributions respectively. The degree distributions are taken to be symmetric
around k = 8.

The coarse-grained bifurcation diagrams obtained using the detailed individual-based
model evolving on the ER and WS networks are also shown for comparison reasons. The
relatively simple mean field models assume randomly selected individuals with replace-
ment, omitting therefore spatial correlations. Compared to the results obtained by the
Equation-free approach, the MF approximation in the case of the ER networks gives
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Figure 7: Coarse-grained bifurcation diagram of the density of “A” voters with respect to
the switching probability ε, using the detailed majority-voter dynamics simulator evolving
on a WS network constructed with rewiring probability p = 0.2 and 2k = 8 initial
neighbors, adding self connection for each node. Solid lines correspond to the coarse-
grained stable states while the dotted lines correspond to unstable ones. The inset depicts
the computed eigenvalue λ, determining the systems, coarse grained stability.

almost identical bifurcation diagrams. In the case of WS the MF gives a qualitatively
similar bifurcation diagram, yet a quantitatively different one. In particular, close to the
coarse-grained criticalities, the analytical model deviates from the actual detailed sim-
ulation results, while the Equation-free framework captures the correct coarse-grained
behavior.

7 Conclusions

Over the years, majority-rule or as otherwise called majority-voter models have been ex-
tensively used to gain a better understanding on the behavior of many complex systems
as diverse as opinion formation and voter/election dynamics, epidemic spread dynam-
ics, culture and language dynamics, crowd flow design and management, and neuro-
science. Due to the nonlinear, stochastic nature of such individualistic models and their
coupling to complex network structures, the emergent behavior cannot be-most of the
times-accurately modeled and analyzed in an efficient straightforward manner. Hence,
the systematic exploration of the emergent dynamics of network-evolving individualistic
models and in particular those based on the majority-rule mechanism becomes, in this
context, of great importance. We proved analytically how the parity and heterogeneity
of the degree distributions influences the symmetry of the coarse-grained stationary solu-
tions of the basic majority-voter model.We constructed the mean field approximations of
the majority-voter dynamics describing the evolution of the zero-th order moment of the
underlying distributions (that is the density of A voters). We also showed how one can ex-
ploit the Equation-free framework to bridge the micro to macro scales of the dynamics of
stochastic individual-based models that evolve on heterogeneous complex random graphs.
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Figure 8: Coarse-grained bifurcation diagram of the density of “A” voters with respect to
the switching probability ε, using the detailed majority-voter dynamics simulator evolving
on a Barabasi network constructed with m0 = 3 and m = 2. Solid lines correspond to the
coarse-grained stable states while the dotted lines correspond to unstable ones. The inset
depicts the computed eigenvalue λ, determining the systems, coarse-grained stability.

In particular, we showed how systems-level tasks such as bifurcation and stability analy-
sis of the coarse-grained dynamics with respect to network topological characteristics can
be performed bypassing the need to extract macroscopic models in a closed form. Our
analysis was focused on four of most-cited types of complex networks: Random Regular,
ErdsRnyi, Watts and Strogatz and Barabasi (scale free) networks. Using the individual-
istic, stochastic simulator as a black-box timestepper for the coarse-grained variables, we
constructed the coarse-grained bifurcation diagrams with respect to the basic parameter
of the majority-voter model: the switching state probability. The derived coarse-grained
bifurcation diagrams were compared with the ones obtained using the corresponding mean
field approximations. The analysis revealed that especially near the critical turning points
the mean-field approximations introduce certain quantitative bias. However the efficiency
of the Equation-free approach emerges in the case of scale-free networks. Due to the high
heterogeneity of such networks with respect to the heavy tailed connectivity distribution,
the bifurcation computations, based on the corresponding mean field approximation, be-
come, as we discussed in section 4, an overwhelming difficult computational task. Further
research could be directed towards the investigation of the influence of more accurate
closures, such as the ones relating the correlations between the states of two or more
connected nodes in the network leading to pairwise approximations [26, 27, 28, 46]. An-
other issue that could be also further studied is related to one of the basic prerequisites
of the Equation-free framework: the a-priori knowledge of the appropriate observables.
However, for arbitrary complex networks these are not known before-hand. In this case,
the use of state-of-the-art data nonlinear dimensionality reduction techniques that can be
exploited to efficiently extract the correct coarse-grained variables from a more complex
individual-based large-scale code could be also attempted.
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Figure 9: Bifurcation diagram of the density of “A” voters with respect to the switching
probability ε, as obtained with the mean-field approximation of the majority-voter dy-
namics evolving on a Erdös Rényi type network with(marked with a triangle) compared
to the coarse-grained bifurcation diagram obtained with the detailed simulator (marked
with a circle).
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