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Abstract
In this paper we study an autocatalytic reaction and we derive the di�erential

equations arising from this reaction. We analyze these equations using phase-space
analysis. We next use Center Manifold theory to derive a stable Center Manifold
for this system. Since this system is a polynomial di�erential system, we study the
orbits of the system which go or come from in�nity using the Poincar�e compacti�-
cation. Interestingly these equations would also represent a population model. All
these concepts are illustrated graphically.
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1 Introduction

The dynamics and chemistry of oscillating reactions has been the subject of study for
the last several years, starting with the work of Boris Belousov who stumbled upon an
oscillating chemical reaction system. In 1961, ten years after Belousov's initial experi-
ments, new work was initiated by A. M. Zhabotinskii. He quickly reproduced Belousov's
results, and soon began working on similar systems. This reaction system, now commonly
referred to as the Belousov-Zhabotinskii reaction has beenthoroughly studied from both
chemical and mathematical perspectives. There are now a large number of both `real' and
`toy' systems that provide insight into the complex behavior of autocatalytic oscillating
systems [7, 9]. Among them are the Lotka-Volterra, the Oregonator and the Brusselator.
In this paper we put forward a simple two-gender based population model which is also
based on an autocatalytic chemical reaction.
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2 The Model

We assume that a chemical system is subject to a mass-action kinetics. Considering the
kinetics of a reaction, this law states that the rate of an elementary reaction is proportional
to the product of the concentrations of the participating molecules. Consider the following
sequence of chemical reactions,

A + y
k1

GGGGGBF GGGGG
� k1

x + B (1a)

x
k2

GGGGGBF GGGGG
� k2

y + 2x (1b)

x + 2y
k3

GGGGGBF GGGGG
� k3

y (1c)

C + x
k4

GGGGGBF GGGGG
� k4

y + D (1d)

E + y
k5

GGGGGBF GGGGG
� k5

y + F (1e)

Wherek1,k2,k3,k4 and k5 are the rates of the forward reactions, the negative counterparts
are the rates of the backward reactions.x and y are the autocatalysts, since they are
generated during the sequence of reactions and catalyze thereaction. A, B , C, D are
some four chemicals. We denote the concentration of the chemicals by the same symbols
as the chemicals themselves. The net result of these equations is

A + C GGGGBF GGGGB + D:

Let us consider equation (1a). From the Law of Mass Action this implies

dx
dt

/ y;

and (1b) ) that
dx
dt

/ � yx2;

from which after putting in suitable proportionality constants (a > 0; b > 0) we have

dx
dt

= by� ayx2:

Next from equations (1c) and (1e) we obtain that

dy
dt

/ xy2

and
dy
dt

/ � y
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respectively. After putting in suitable proportionality constants we have

dx
dt

= � y � by+ ay2x:

If x and y denote the composition variables of the two intermediates or the auto-
catalysts, the rate equations after adjusting suitable proportionality constants take the
general form:

dx
dt

= f (x; y) (2)

dy
dt

= g(x; y)

The system we propose for the autocatalystsx and y is

dx
dt

= by� ayx2 (3)

dy
dt

= � y � by+ axy2

The di�erential system (3) is an autonomous system as there is no explicit dependence
on time t. We assume thatf and g are continuous and satisfy the Lipschitz condition in
a certain bounded domain, D, of the phase space (x; y).

2.0.1 A Two-Gender Population Model

The system of equations (3), interestingly could also represent a population model in
which one considers two sexes involved in reproduction. (see for example [11] and [3]).
In [11], the authors consider a bisexual, non-marriage model which involves a function
H [N1(t); N2(t)] which is taken to be a homogeneous function inN1(t) and N2(t), (N1(t)
and N2(t) represent the populations of the male and female species respectively) for
the sake of scale independence. If we discard the scale independence since, in any case
scale-independence is an arti�cial assumption, in our model this function need not be a
homogeneous function inN1(t) and N2(t). This could be a topic of further study.

3 Analysis of the system

We now perform an analysis of the system.

The equilibrium points are (0; 0), (�
q

b
a ; � 1+ bp

ab
).

The last two equilibrium points exist only if ab > 0 and b 6= � 1: Since our choice for
the parametersa and b is � 0; all three equilibrium points exist. A quick observation of
the system (3) shows that the liney = 0 is a continuum of equilibrium points. Also it can
be seen that the system invariant under the symmetry (x; y) ! (� x; � y); consequently
one needs to study its dynamics only in a half-plane.

Also since the system has a continuum of equilibrium points on the line y = 0; it is
more convenient to study the system without this continuum. We therefore introduce
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a change in the independent variablet ! � through d� = ydt, and we examine the
associated system

dx
d�

= b� ax2

dy
d�

= � 1 � b+ axy: (4)

We next linearize the system (4) about the equilibrium points (�
q

b
a ; � 1+ bp

ab
), to obtain

the coe�cient Jacobian Matrix respectively as
 

� 2
p

ab 0
�

p
a(b+1)p

b
�

p
ab

!

(5)

Next, we �nd the Eigenvalues of (5), they aref� 2
p

ab;
p

abg and f�
p

ab;2
p

abg cor-
responding to the two equilibrium points respectively. Since the Eigenvalues are positive
and negative the equilibrium points are saddle points.
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Figure 1: The two equilibrium points (�
q

b
a ; � 1+ bp

ab
), with a = 18 and b= 1.

That the equilibrium points are saddle points can also be seen from the �gure Fig. 1,
the equilibrium points are marked by the intersection of thedashed lines.

4 Absence of closed orbits

We now state the well-known
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Figure 2: The rotation of the vector �eld of the system (4) showing the index of the
critical point as -1.

Bendixson's criterion for the absence of closed orbits.Statement of Bendixson's
Criterion : If on a simply connected regionD � R2 the expression (if we consider a system
in the form as in equation (2)), @f

@x+ @g
@y is not identically zero and does not change sign,

then equation (2) has no closed orbits lying entirely inD:
In order to apply Bendixson's Criterion consider the system(3) with f (x; y) = by �

ayx2 and g(x; y) = � y � by+ axy2; then the quantity @f
@x+ @g

@y = � b� 1:
In order to satisfy Bendixson's Criterion, b 6= 1 and b � 0: For b satisfying these

conditions the system has no closed orbits. Since we choose in any case thatb 6= 1 and
b � 0 we can say that the system under consideration has no closedorbits.
Topological Index or Poincar�e Index A fundamental concept in vector �eld topology
is the so-called Poincar�e index of a simple closed curve: Itmeasures the number of ro-
tations of the vector �eld while traveling along the curve ina positive direction [8]. The
index of a critical point is the index of a simple closed curvearound the critical point
enclosing no other singular point. Mathematically this is calculated for a closed curve
by the following integral index  = 1

2�

H
 d� where� is the angle the vector �eld traverses

around the curve in an anti-clockwise direction.
From Fig. 2 it can be seen that the vector �eld makes one complete rotation in the

clockwise direction around a simple closed curve surrounding the equilibrium point. Hence
the index of the critical point is -1.

This also shows that there are no closed orbits surrounding the equilibrium point. By
symmetry the second equilibrium point can also be seen to have index -1.

5 Poincar�e Compacti�cation

In order to study the behavior of the trajectories of a planarpolynomial di�erential system

_x = P(x; y)

_y = Q(x; y) (6)
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near in�nity a compacti�cation is generally used. We use thethe Poincar�e compacti�ca-
tion [4, 5]. The Poincar�e compacti�cation relies on stereographic projection of the sphere
onto the plane, for studying the behavior of trajectories near in�nity making use the
so called Poincar�e sphere, introduced by Poincar�e [6]. This has the advantage that the
singular points at in�nity are spread out along the equator of the sphere. The Poincar�e
compacti�cation, enables one to draw the trajectories in a �nite region and controls the
orbits which tend to or come from in�nity.

Poincar�e compacti�cation works as follows: Firstly we considerR2 as a plane inR3 de-
�ned by ( y1; y2; y3) = ( x; y; 1). Next, we consider the sphereS2 = y 2 R3 : y2

1 + y2
2 + y2

3 = 1
which we will call here the Poincar�e sphere; This sphere is tangent to R2 at the point (0,
0, 1). We may divide this sphere intoH+ = y 2 S2 : y3 > 0 (the northern hemisphere),
H � = f y 2 S2 : y3 < 0g (the southern hemisphere) andS1 = f y 2 S2 : y3 = 0g (the
equator).

We consider the projection of the vector �eldX from R2 to S2 given by the projections
f + : R2 ! S2 and f � : R2 ! S2: Or f + (x) (respectively, f � (x)) is the intersection of the
straight line passing through the point y and the origin withthe northern (respectively,
southern) hemisphere ofS2.

f + (x) =
�

x
� ; y

� ; 1
� ;

�
,f � (x) =

�
� x

� ; � y
� ; � 1

� ;
�

where �( x) =
p

x2 + y2 + 1:
We thus obtain induced vector �elds in each hemisphere. The induced vector �eld on

H+ is �X (y) = Df + (x)X (x); wherey = f + (x), and the one inH � is �X (y) = Df � (x)X (x),
wherey = f � (x) where DX represents the linear part of the vector �eldX .

As is usual in working with curved surfaces, we use charts or planes for calculational
purposes. ForS2 we use the six local planes given byUk = f y 2 S2 : yk > 0g; Wk = f y 2
S2 : yk < 0g for k = 1; 2; 3: The corresponding local maps� k : Uk ! R2 and  k : Wk ! R2

are de�ned as (ym =yk ; yn=yk) for m < n and m; n 6= k: We denote byz = ( u; w) the value
of � k(y) or  k(y) for any k; such that (u; w) will take on di�erent values depending on
the plane we are considering. The points ofS1 in any chart havew = 0:

With this preliminary notation it can be deduced (see [2]) that on U1,for example
(u; w) =

� y
x ; 1

x

�
and for system (6) we have

_u = wd

�
� uP

�
1
w

;
u
w

�
+ Q

�
1
w

;
u
w

� �
;

_w = � wd+1 P
�

1
w

;
u
w

�
: (7)

Where d is the maximum of the degree of the polynomial �eldsP or Q: On the planeU2,

_u = wd

�
uP

�
u
w

;
1
w

�
� uQ

�
u
w

;
1
w

� �
;

_w = � wd+1 Q
�

u
w

;
1
w

�
: (8)

On the planeU3 it is

_u = P(u; w) (9)

_w = Q(u; w): (10)
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For the other three planesWi ; i = 1; 2; 3, the expression is the same as for theU0
i s

multiplied by ( � 1)d� 1; for i = 1; 2; 3:
With these equations we evaluateU1; U2; W1; W2, for the system of equations (3) with

a = 1 and b= 1, to obtain its Poincar�e Compacti�cation.
Using (x = 1=z2; y = z1=z2): The di�erential system on the U1 chart is:

z0
1 = � z1z2

2 + 2z1 � 2z2
2

z0
2 = � z3

2 + z2

(0; 0) is an unstable node here. The di�erential system on theW1 chart is:

z0
1 = z1z2

2 � 2z1 � 2z2
2

z0
2 = z3

2 � z2

The di�erential system on the U2 chart is:

z0
1 = z2

2 � 2z2
1 + 2z1z2

2

z0
2 = 2z3

2 � z2z1

Here (0,0) is nonelementary .
The di�erential system on the W2 chart is:

z0
1 = z2

2 � 2z2
1 � 2z1z2

2

z0
2 = � 2z3

2 � z2z1

Using theP4 software described in [2] we plot the phase portrait on the Poincar�e disk.
Fig. 4 shows the stable and unstable separatrices on the Poincar�e disk along with two
saddle points. Two other equilibrium points, one a stable focus and the other an unstable
focus are located on the equator ofS2 at S2: These can be seen in Fig. 4.

6 Existence of a Center Manifold

We now try to see if there is any region in the phase-space in which the solutions are
invariant. To this end we set about �nding an invariant center-manifold. But �rst we
need a few technical preliminaries: We consider vector �elds of the form

_x = Ax + f̂ (x; y); (x; y) 2 Rc � Rs;

_y = By + ĝ(x; y) (11)

where f̂ (0; 0) = 0; D f̂ (0; 0) = 0; ĝ(0; 0) = 0; Dĝ(0; 0) = 0: In the above, A is a c � c
matrix having eigenvalues with zero real parts,B is an s � s matrix having eigenvalues
with negative real parts, andf̂ and ĝ are Cr functions (r � 2).

De�nition 6.1 [10] (Center Manifold) An invariant manifold will be calleda center man-
ifold for (11) if it can locally be represented as follows

W c(0) = f (x; y) 2 Rc � Rs j y = h(x); jxj < �; h (0) = 0 ; Dh(0) = 0 g

for � su�ciently small.
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Figure 3: The phase portrait on the Poincar�e disk

Figure 4: The Separatrices and the Equilibrium points on thePoincar�e disk
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Theorem 6.1 (Existence) There exists aCr center manifold for (11). The dynamics of
(11) restricted to the center manifold is, foru su�ciently small, given by the following
c-dimensional vector �eld,
_u = Au + f̂ (u; h(u)); u 2 Rc:

The system (3) can be re-formulated in terms of the functionsf (x; y) and g(x; y) and A
and B with

A = 0; B = � 1; f̂ (x; y) = by� ayx2; ĝ(x; y) = � by+ axy2;

Then clearly the conditions for the existence of a center manifold are satis�ed. In the
above,A is a c � c matrix having eigenvalues with zero real parts, in our example A is
a scalar equal to 0,B is an s � s matrix having eigenvalues with negative real parts, in
this caseB is a negative scalar =� 1, and f̂ and ĝ are Cr functions (r � 2). Then by
Theorem (6.1), there exists a center manifold to be obtainedfrom the equation

_u = Au + f̂ (u; h(u)); that is _u = 0 + f̂ (u; h(u)). We obtain h(u) using a method put
forth in [10]. We outline the procedure briey to obtain the function h(x). We derive an
equation that h(x) (or h(u)) must satisfy in order for its graph to be a center manifold
for (3). Towards this end let us assume that we have a center manifold

W 2(0) = f (x; y) 2 R 2 � R 2 j y = h(x); jxj < �; h (0) = 0 ; Dh(0) = 0 g;

Let h(x) = cx + dx2 + sx3 : : :, wherec and d and s are constants to be determined.
Starting with the assumption of invariance ofW 2(0) under the dynamics of (3), we

derive a quasilinear partial di�erential equation that h(x) satis�es. This is derived in the
following manner: The (x; y) coordinates of any point on the center manifoldW 2(0) must
satisfy the function

y = h(x) (12)

If we di�erentiate Equation (12) with respect to t; we obtain

_y =
h(x)
dt

_x: (13)

Since any point onW 2(0) satis�es the dynamics of (3), so ( _x; _y) from (3) should
satisfy (13). In general equation (11) could then be writtenas

_x = Ax + f̂ (x; h(x)) ;

_y = Bh(x) + ĝ(x; h(x)) : (14)

Then equation (11) becomes

N � Dh(x)[Ax + f̂ (x; h(x))] � Bh(x) + ĝ(x; h(x)) (15)

If equation (15) is solved we obtain the invariant center manifold h(x):
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7 Computation of the Center Manifold

Consider (3), for the purpose of computing the center manifold we set the functions
f̂ (x; y); and ĝ(x; y) from equation (11) as

f̂ (x; y) � by� ayx2

ĝ(x; y) � � by+ axy2;

constantsA = 0 and B = � 1: Let h(x) = cx + dx2 + sx3 : : : Then the system satis�es the
conditions of Theorem (6.1) required for the existence of a center manifold. Substituting
for h(x) we have

Dh(x)[Ax + f̂ (x; h(x))] � Bh(x) + ĝ(x; h(x))

� (c + 2dx + 3sx2)[x
�
b� ax2

�
(c + x(d + sx))]

� (� 1)(cx + dx2 + sx3 : : :) + ax3(c + x(d + sx))2

= x3
�
� 2ac2 + 4bcs+ 2bd2 + ( b+ 1) s

�
+ x

�
bc2 + ( b+ 1) c

�
+ x2(3bcd+ ( b+ 1) d) + : : : (16)

Equating coe�cients of the powers ofx of equation (16) to zero, we obtains = � 2a(b+1)
3b2 ; c =

� b� 1
b and d = 0 and henceh(x) = � b� 1

b x � 2a(b+1)
3b2 x3:

Fig. 5 show the center manifold as a thick line along with the level lines of the system
for a = 18, b= 1.
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Figure 5: The center manifold shown as the thick line, witha = 18 and b= 1.
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8 Conclusion

We formulated a model from an autocatalytic reaction, whichthus represents the chemi-
cal reaction. We hypothesized that this could also represent a population model with two
genders. Initially we performed a simple phase plane analysis, and a study of its equi-
librium points. Since the system is a planar polynomial system, we studied its Poincar�e
compacti�cation to understand its equilibrium points at in�nity and the separatrices.

The theory that we developed so far tells us that equation (3)has an invariant manifold
y = h(x); which we have derived and plotted against the phase portraitof the system in
Fig. 5. While the equilibrium points are saddle points, we have an invariant manifold
which, and as is well-known is not necessarily unique [1].
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