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Abstract: Synchronization phenomena of two nonlinear oscillator systems when cou-
pled through a memristor are analyzed exhaustively. Due to the presence of the memristor
the coupling is nonlinear and very similar to a synaptic coupler. Study of such systems
are now a days extremely important due to the recent thrust on neuromorphic computing
which tries to replicate the principles of operation of human brain, where a series of such
systems either coupled in series or in parallel are used. Here we have considered Lorenz
and Hindmarsh-Rose systems in particular. They are analyzed by numerical simulations.
They are also analyzed experimentally through electronic circuits. For the experimen-
tal part, the memristor is replaced with the equivalent op-amp combination. The most
striking phenomenon observed is that the synchronization shows an intermittent charac-
ter with respect to parameter variations due to the existence of complex basin structure
with more than one attractor. Another new aspect of this type of synchronization is its
sensitive dependence on initial conditions which is due to the existence of complex basin
structure with more than one attractor. As such a totally new type of synchronization is
observed and explored.
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1 Introduction

In 1971 [1], L. O. Chua was the first proposed that there should be a fourth circuit element
other than the three known ones, resistance (R), inductance (L) and capacitance (C). This
was called memristor (M) by him to indicate that it is some kind of resistor with a mem-
ory [2]. Though it was proposed long ago but only in the year 2008 [3], Hewlett-Packard
announced that its fabrication has become a possibility but still not commercially viable
[4]. Potential applications of such memristors span diverse fields ranging from nonvolatile
memories on the nano-scale [3, 5] to modeling neural networks [6, 7]. In the mean time
people have observed that all the properties of memristor can be replicated with the help
of some op-amp combination [8, 9]. As such many of the studies involving memristor uti-
lizes op-amp combination [10, 11]. Coupling such circuits in different ways [12] has become
an important field of investigation. In the light of this development, it is quite justified
to ascertain some important applications of such a new device. One such is the behavior
of a memristor which mimic to some extent operations of biological synapses. Just like
a synapse, which is essentially a programmable wire used to connect a group of neurons
together, the memristor changes its resistance adaptively. Also the strength of coupling
can get stronger or weaker depending on situation in actual synaptic coupling. Thus, a
programmable self-adaptive weight can be modeled through memristors. As such, its ap-
plicability in neuromorphic computing is huge. Neuromorphic computation discusses the
use of very-large-scale integration (VLSI) systems containing electronic analog circuits to
mimic neuro-biological architectures of nervous system [13, 14]. The term neuromorphic
has been used to describe analog, digital, and mixed-mode analog/digital VLSI and soft-
ware systems that implement models of neural systems (for perception, motor control, or
multisensory integration). This is a new interdisciplinary subject that takes inspiration
from biology, physics, mathematics, computer science and electronic engineering to design
artificial neural systems, such as vision systems, head-eye systems, auditory processors,
and autonomous robots, whose physical architecture and design principles are based on
those of biological nervous systems. Recently some researchers at Purdue presented a
design for a neuromorphic chip using lateral spin valves and memristors [15] in June 2012.
Another such work was done at HP Labs on Mott memristors [16, 17]. Due to this impor-
tance, a subclass of neuromorphic computing systems that focus on the use of memristors
to implement neuroplasticity, has originated and they are named neuromemristive sys-
tems. It has been predicted that a neuromemristive system may replace the details of a
cortical microcircuit’s behavior with an abstract neural network model.

Another significant phenomenon, that has been developed in last two decades, is syn-
chronization [18, 19] of two or more systems. Synchronization is crucially depended on
the nature of the corresponding coupling. This is immensely important from the point
of view of both experiment and theory. Coupling between same variable of two or more
non-linear system leads to synchronization is a well documented fact. This has been ob-
served in many physical [20, 21], chemical [22], ecological [23, 24] and biological systems
[25]. Later, this phenomena have found one of its many applications in cryptography and
secure communications. Moreover, coupling nonlinear systems in different spatial config-
urations leads to the construction of spatiotemporal systems that can exhibit a variety of
exotic dynamical behavior such as pattern formation, wave propagation, rotating spirals
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[26] and chimera. They mimic spatiotemporal dynamics, observed in biological systems
[27], very well. Finally, recent works have shown that coupling nonlinear elements can
invoke a plethora of interesting phenomena, such as hysteresis, phase locking, phase shift-
ing, phase flip, amplitude death [28, 29, 30] and oscillation death [31] in the dynamical
behavior of the coupled systems.

So our motivation in the present communication is to bring the two field together.
Thus, we analyze the behavior of two non-linear oscillators coupled though a memristor.
At first system, we have taken two Lorenz systems [32] and then we have used two
Hindmarsh-Rose oscillators [33]. There have been various discussions on coupled Lorenz
or Hindmarsh-Rose system to study the process of synchronization [18]. But these are
essentially linear one way or two way coupling. But the memristor itself is not a linear
device as such the coupling itself is nonlinear. To ascertain the various aspects of such
a new analysis we have studied the problem both from the theoretical and experimental
view point. An electronic circuit is constructed with the help of operational amplifier
to simulate the behavior of a memristor, which is then used to connect the circuits for
two Lorenz or two Hindmarsh-Rose circuits. All the results related to the chaotic and
periodic behavior, synchronization, bifurcation are obtained from both these approaches
and are seen to corroborate each other. Important features of this type of synchronization
procedure are;

(a) The process is intermittent with respect to parameter variation. An event not so well
known but may be ascribed to the existence of more than one attractor. Standard
intermittency is with respect to time which is usually observed during the time of
synchronization.

(b) The process is highly sensitive to the change in the initial condition difference, which
is an outcome of multi-stable error equation. This is an effect of coupled system
becoming a multi-attractor system.

(c) These new kind of events may have been triggered due to the existence of line of fixed
points in the coupled system due to the fact that the flux variable of memristor do
not posses any fixed value.

Hindmarsh-Rose (HR) model of neuronal activity is aimed to simulate spiking-bursting
behavior of the membrane potentials observed in a single neuron. Thus, our choice of
using Hindmarsh-Rose (HR) oscillator for synchronization is driven by our aim of using
memristor in neural modeling.

2 Formulation

2.1 Lorenz Equation

Suppose x components of the two Lorenz equations (i.e., (x1, x2) are variables) are coupled
via a memristor, whose flux variable is ‘u′. Thus the equation governing two Lorenz system
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Figure 1: Stability diagram in (α, β) space where u is kept at 1.

Figure 2: Three dimensional figure in (α, β, u) space of eigenvalue.
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Figure 3: Phase synchronization between two sets of Lorenz equations represented in
Eq. (1). Parameter values are kept at c = 0.1, α = 0.2, and β = 0.4. Here (a) and (b)
represent two attractors while (c) represent the two time series x1 and x2.
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Figure 6: Time series of Lorenz system at complete synchronization. Parameter values
are kept at c = 0.5, α = 0.2, andβ = 0.4. Here (a) and (b) represent two attractors. (c)
represent mean squared value of error < e2(t) > with time and u with time. (d) represent
the two time series x1 and x2. (e) represent the two time series y1 and y2.
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Figure 9: Parameter region indicating fraction of initial condition combination that
reaches synchronization for a particular value of coupling ‘c′ on (α, β) plane. Fig. (a) is
plotted for c = 0.3, Fig. (b) is plotted for c = 0.6, Fig. (c) is plotted for c = 0.8 and Fig. (d)
is plotted for c = 1.0. Other parameter values are kept at σ = 10, r = 28 and b = 8

3
.

[32] coupled through a memristor can be written as

ẋ1 = σ(y1 − x1) + c(α + βu2)(x2 − x1) (1a)

ẏ1 = rx1 − y1 − x1z1 (1b)

ż1 = x1y1 − bz1 (1c)

ẋ2 = σ(y2 − x2) + c(α + βu2)(x1 − x2) (1d)

ẏ2 = rx2 − y2 − x2z2 (1e)

ż2 = x2y2 − bz2 (1f)

u̇ = c(x2 − x1) (1g)

where the memristor is an electronic element which satisfies the following equation

W (u) =
dq(u)

du
(2a)

iM = W (u)VM (2b)

Here, W (u) is called memductance. The associated current is iM and voltage is VM .
The current and voltage are related through Eq. (2). At present various forms of mem-
ductance are in use of which a cubic from is most popular. So here we consider flux
controlled memristor with cubic q(u).

It is apparent from the above equations the ‘x′ components of the two Lorenz equations
are connected via the memristor which is of standard cubic type initially suggested by
Leon O. Chua.

q(u) = αu+
β

3
u3 (3)
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Substituting eq. (3) in eq. (2), we get the following relation

iM = (α+ βu2)VM (4)

This expression contributes the coupling term in Eqs. (1a) and(1d). Now, the fixed
points of the system are x1 = x2 = 0, y1 = y2 = 0, z1 = z2 = 0 for arbitrary ‘u′, or for
x1,2 = y1,2 = ±

√
br − b, and z1,2 = r − 1 again for arbitrary ‘u′. Hence the system has

a line of equilibria contained in the ‘u′-axis. The linearized system around the first fixed
point has the eigenvalues, {0,−1

2
− 1

2
σ+M,−1

2
− 1

2
σ−M,−βcu2−αc− 1+σ

2
+ 1

2
N,−βCu2−

αc− 1+σ
2

− 1

2
N,−b,−b} where M and N are given as

M =
√
4rσ + σ2 − 2σ + 1

N = [4β2c2u4 + 8αβc2u2 + 4βcσu2 + 4α2c2 − 4βcu2

+4αcσ − 4αcσ − 4αc+ 4rσ + σ2 − 2σ + 1]
1

2

On the other hand for the fixed point x1 = y1 =
√
br − b, z1 = z2 = r − 1, x2 = y2 =√

br − b, real part of the eigen value is is shown in Fig. (1). It shows variation within
(α, β) plane. The eigenvalue equation can be factorized as

1

9
{3λ3 + 41λ2 + 304λ+ 4320 + bλ2cβu2

+22λcβu2 + 448cβu2 + bλ2cα + 22λcα + 448cα}
{3λ3 + 41λ2 + 30λ+ 4320} = 0 (5)

As evident from eigenvalues that stability of the coupled system does not depend on sign
of ‘u′. Through out the rest of the paper, we have assumed, σ = 10, r = 28 and b = 8

3
.

The onset of instability can be ascertained with the help of Routh stability criterion. In
this connection, one should note that we have assumed u to be arbitrary in our above
computation till now. To ascertain the stability of the system from change of sign of the
eigen value with variation of α andβ, we must fix the value of u. If we fix u = 1, then
eigen values give an implicit relation of (α, β), which is simply a straight line as evident
from Fig. (1). Region below the straight line is stable and region above this straight
line is unstable. If we vary u from 0.0 to 5.0, we get the figure given in Fig. (2). The
plane represent the combination of values of α, β and u for which chaotic motions set
in. Fig. (2) indicates that the region in (α, β) plane where chaos sets in decreases with
the increment of values of ‘u′ above ‘1′. Opposite phenomena happens, if we decrease
it below ‘1′. From calculation of coefficients of the Routh table above conditions for
instability can be crosschecked. First we identify, inphase synchronization between two
Lorenz system coupled through the procedure described in Eq. (1). Fig. (3) depicts
a situation when two coupled Lorenz systems are inphase. There we have taken c =
0.1, α = 0.2, and β = 0.4. Here coupled systems are kept at slight parameter mismatched
conditions( we kept σ = 10 for first system and σ = 10.1 for second system). In Fig. (3a)
and (3) we show the structure of the attractors. Onset of phase synchronization is
identified with the help of Lyapunov exponents(λi, where i = 1, · · · , 7) of the coupled
system. Inphase synchronization sets in as the fourth largest Lyapunov exponent(λ4)
becomes negative from zero [34]. The region of phase synchronization in (α, β) plane
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are denoted in Fig. (4). These figures are obtained by denoting points where fourth
maximum Lyapunov exponent (λ4) of the coupled system crosses from zero to negative
value. Regions of phase synchronization are identified through white space and non-phase
synchronizing regions are identified with green color. Figs. (4a) and (4b) show two such
scenarios for two different coupling values c = 0.1 and c = 0.2 respectively. Intermittency
in parameter region depicting onset of phase synchronization in (α, β) plane is evident
from both Figs. (4a) and (4b). Here ‘intermittency’ denotes the island like structures
in (α, β) plane denoting values of (α, β) for which inphase synchronization occur in the
coupled system.

Next, we have tried to identify identical synchronization between two memristively
coupled Lorenz systems. In Fig. (5a), we exhibit the three dimensional projection of the
memristive Lorenz equation in the (u, x, y) space. This figure suggest that in-spite of the
structure of the Eq. (1) the variable ‘u′ remains bounded and the projected phase space
has an attractor structure, which is verified by the computation of Lyapunov exponents.
Fig. (5b) shows that time series of ′u′. Both of this figures are plotted when synchroniza-
tion is not archived. A similar analysis can also be done for the Hindmarsh-Rose equation.
To start with, we initially investigate the occurrence of phase synchronization. We depict
one such scenario in Fig. (6) i.e., situation when memristively coupled Lorenz systems
are identically synchronized. We show two individual attractors in Figs. (6a) and (6b),
where as the corresponding time series (x1, x2) and (y1, y2) are shown in (6d) and (6e).
The expected values of the square of the error tending towards zero at synchronization is
shown in Fig. (6c) and value of u, when synchronization occur, is measured as u = 11.2.
So it is concluded that the two Lorenz systems synchronize when they are being coupled
through a memristor. We now proceed to verify the existence of complete synchroniza-
tion by the computation of Lyapunov exponents of the coupled system. We identify the
complete synchronization when second largest Lyapunov exponent(λ2) crosses zero from
being positive.

In Fig. (4), we exhibit regions of synchronization for the coupled Lorenz systems
of Eq. (1) by computing zero crossing of second largest Lyapunov exponent(λ2). Syn-
chronizing regions are indicated with white color on (α, β) plane for a fixed values of
coupling constant ‘c′ and asynchronous regions are identified with green. It is interesting
to note that these regions are intermixed and scattered over the whole region of (α, β)
plane under the purview of this numerical investigation. This indicates that the syn-
chronization stat does not exist continuously after its first occurrence on (α, β) plane,
but some times gets lost. So this is called intermittent synchronization, with respect to
the variation of parameter values(as they exist intermittently on (α, β) plane), not with
respect to time. For a better understanding of the situation, we have calculated variation
of zero crossing of second largest Lyapunov exponent with respect to parameters (α, β)
for different values of ‘c’. These are depicted in Fig. (7a) to (7d) for coupling values
c = 0.5, c = 0.7, c = 0.9 and c = 1.0 respectively. In each case green and white regions
indicate asynchronous and synchronous states respectively. All these figures are plotted
with initial error values ex(0) = ey(0) = ez(0) = 0.1 where these errors are defined as
ex(0) = x2(0) − x1(0), ey(0) = y2(0) − y1(0), ez(0) = z2(0) − z1(0). Initial point of the
first system of are kept at values x1(0) = 0.1, y1(0) = 0.2, z1(0) = 0.3. These initial
conditions are kept fixed through out the paper. Values of (x2(0), y2(0), z2(0)) are varied
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according to the value of (ex(0), ey(0), ez(0)). These scheme is used for all simulations in
this paper. The importance of stating the initial values will be explained later. These
figures indicate intermittent occurring of complete synchronization in parameter space of
(α, β).

A further peculiarity of the system is described in Figs. (8a) to (8d), where we have
kept α = 0.3 constant and we have varied β along with initial error between the two
systems along x direction ex(0), for coupling values c = 0.5, c = 0.7, c = 0.9 and c = 1.0
respectively. Fig. (8) indicates a strong intermittent behavior with respect to the initial
value difference of coupled system. This is occurring as the corresponding error equations
have line of fixed points(ex = 0, ey = 0, ez = 0, and arbitrary values of ‘u′). Such a situ-
ation has not been seen before and this is actually an effect of the memristive coupling.
We have studied effects of initial differences(e(0) = (ex(0), ey(0), ez(0))) in initial condi-
tions of coupled Lorenz system through memristor in Figs. (24). Here we have calculated
the fraction(Fs) of total initial condition differences between two coupled Lorenz circuits
that leads to synchronization over total number of initial condition difference combination
taken for calculation. Here Fs is defined as number(ns) of combination of initial condition
difference between coupled Lorenz system for which synchronization can be archived over
total number(n) of such combinations taken for calculation(i.e., Fs = ns

n
). For that we

have varied ex(0), ey(0) and ez(0) between ‘0′ and ‘1′ continuously in a 100 × 100 × 100
combination. Then we have calculated the fraction of initial conditions for which sec-
ond maximum Lyapunov exponent (λ2) becomes negative over total number of initial
difference taken. Figs. (24a), (24b), (24c) and (24d) show the contour lines (i.e., isolines)
indicating fraction values (Fs) from 0.0 to 1.0. Here, Fs = 0.2 indicates that only 20% of
initial condition difference combinations can lead to synchronization over total number of
combinations where as Fs = 0.8 indicates 80% of initial condition difference combinations
can lead to synchronization over total number of combinations. Value of ‘c’ is increased
from 0.3 to 1.0 as we go from Fig. (24a) to Figs. (24d). If we look at them minutely, then
one can identify that with the increase of ‘c’ fraction (Fs)) of initial condition difference
combination going towards synchronization show increment in the left zone of figures. As
value of ‘c’ crosses 1.0 this increment subsides. We have shown four such situations in
Figs. (24). A detailed transition is shown in the appendix.

2.2 Hindmarsh-Rose Equation

The Hindmarsh-Rose equation is actually a nonlinear dynamical system which describes
the pulse propagation in neurons, and is very important from biophysical perspective.
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Here two such equations are coupled through a memristor.

ẋ1 = y1 + ax
2

1 − x
3

1 − z1 + I + c(α+ βu
2)(x2 − x1) (6a)

ẏ1 = 1− bx
2

1 − y1 (6b)

ż1 = −rz1 + sr(x1 + c0) (6c)

ẋ2 = y2 + ax
2

2 − x
3

2 − z2 + I + c(α+ βu
2)(x1 − x2) (6d)

ẏ2 = 1− bx
2

2 − y2 (6e)

ż2 = −rz2 + sr(x2 + c0) (6f)

u̇ = c(x2 − x1) (6g)

The analysis is too complicated to be followed analytically, so only numerical simu-
lations are given. But the numerical results show same interesting phenomena that have
already been described in previous section. Before describing in-phase synchronization,
we have shown the phase space structure and time series of u in Fig. (12). This the
situation of of that system when synchronization is not archived for Hindmarsh rose sys-
tems. We have employed previously described method of finding inphase synchronization
in terms of fourth maximum Lyapunov exponent (λ4) of the coupled system. We have
calculated the value of fourth maximum Lyapunov exponent (λ4) of the coupled system
and have studied its variations from zero to negative value on (α, β) plane to find regions
where inphase synchronization occurs. The variation of λ4 is shown in Fig. (10a) and
(10b) for the choice of coupling c = 0.001 and c = 0.01 respectively. In Fig. (10a) and
(10b), the region of inphase synchronization is depicted with white where as green repre-
sents the region where inphase synchronization cannot occur. In each case, variation of
fourth maximum Lyapunov exponent (λ4)) on (α, β) plane for fixed values of ‘c’ clearly
suggest an intermittent character of inphase synchronization in the sense described in
previous section. Then we analyze the complete synchronization of memristively coupled
Hindmarsh-Rose systems.

An example of complete synchronization is depicted in Fig. (11). We show three dimen-
sional projection of individual system’s attractor in Fig. (11a) and (11b). The time series
(x1, x2) and (y1, y2) are given in Fig. (11d) and (11e). But the error is given in Fig. (11c)
where value of u saturates to u = −0.39, which shows that a state of synchronization has
been archived. In each of these figures we have set c = 0.5, α = 0.2, and β = 0.4. Initial
condition differences are kept at ex(0) = 0.1, ey(0) = 0.25 and ez(0) = 0.4 where these
errors are defined as ex(0) = x2(0)−x1(0), ey(0) = y2(0)−y1(0), ez(0) = z2(0)−z1(0). To
have a better understanding of complete synchronization, we have also calculated values
in (α, β) when second maximum Lyapunov exponent(λ2) changes from positive to nega-
tive and this is shown in Fig. (13a) to Fig. (13d) for various values of ‘c’(as it is stated in
previous section when second maximum Lyapunov exponent(λ2) crosses from positive to
negative through zero, complete synchronization occurs in the coupled system). Values
of ‘c’ for different Figs. (13a),(13b),(13c) and (13d) are given as c = 0.3, c = 0.5, c =
0.7 and c = 0.9. Here also green regions describe states where complete synchronization
cannot occur and white regions describe regions where complete synchronization can oc-
cur. In green regions of Fig. (13) second maximum Lyapunov exponent(λ2) is positive and
second maximum Lyapunov exponent(λ2) is negative in white regions. It is important to
note that the region of synchronization and desynchronization drastically changes with
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variation of coupling. In the next stage, we have kept ‘c′ and α fixed but have varied β

and the initial difference of the two system along x-direction i.e., ex(0) = x2(0)− x1(0).
The corresponding situations are depicted in Fig. (14). α is kept fixed at 0.1 for all
figures in Fig. (14). Values of ‘c′ corresponding to Figs. (14a), (14b), (14c) and (14d)
are c = 0.3, c = 0.5, c = 0.7 and c = 0.9 respectively. Again one should note that the
intermittent character arising from multistability of the error equation is evident in these
figures as we find different islands of synchronization denoted through white region in
figures. Like the previous example, we then simulate the system with 100 × 100 × 100
combinations of ex(0) = x2(0) − x1(0), ey(0) = y2(0) − y1(0) and ez(0) = x2(0) − x1(0)
lying between 0 and 1. Fraction(Fs) of initial value difference combination(ns) for which
coupled system goes to synchronization over total number of combinations taken(ns)) are
represented in Fig. (25). These are calculated using the method used in previous section
for Lorenz system. Values of ‘c′ for different Figs. (25a),(25b),(25c) and (25d) are given
as c = 0.2, c = 0.3, c = 0.5 andc = 0.7. Here also we see an anomalous behavior of
fraction Fs. For lower value of ‘c’, most of the initial condition difference leads to chaos
synchronization for lower values of α and β and this fractional value Fs (i.e., fraction of
initial condition difference that reaches synchronization) decreases with increasing value
of α and β. This is evident from α > 0.4 and β > 0.4 region in Fig. (25a). As value of ‘c′

increases this fraction of initial condition difference that reaches synchronization requires
higher value of α and β. For lower values of α and β, fractions values are close to zero(this
is evident in Figs. (25b),(25c) and (25d)). Thus, a flipping transition in region depicting
maximum value of fraction Fs on (α, β) plane occurs as we increase coupling value ‘c’. A
detailed transition is shown in the appendix where this flipping is more prominent.

3 Experimental Simulation

The analogue circuit pertaining to the Lorenz equation [35] is well known and the two
circuits Lorenz1 and Lorenz2 are shown in Fig. (16). Each Lorenz circuit consists of two
high speed multipliers AD633 and one quad-core OP-amps TL084CN with three ceramic
capacitors of 0.01 µF and resistance of varying degree of ohms from 10k to 100k, with a
power source of 12 V. The circuit shown in the middle of the Fig. (16) is the coupling which
actually consists of three parts. First part is the voltage divider, then an amplifier and
last part is a voltage inverter. The amplifier part consist of a memristor and a feedback
resistance. This is actually responsible for the coupling term in the second equation in (1).
As the exact hardware for the memristor is still not commercially available the memristor
is represented with the help of circuit shown in Fig. (17), which consists of two AD633
along with one TL084CN Op-amp, a ceramic capacitor, resistance and voltage source.
Before going into the detail of results obtained from this circuit, let us describe the the
individual Lorenz circuit and memristor circuit in detail. To model the Lorenz system,
we have to scale the variables (x, y, z) within the active voltage range.

u1,2 =
x1,2√
aR

, v1,2 =
y1,2√
aR

and w1,2 =
z1,2

aR
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Figure 18: Two coupled electronic Hindmarsh-Rose circuits
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We have taken a = 1

3
. Then three oscillator parameters (σ, R and b) are controlled by

three resistors of each Lorenz circuit. They are given bellow.

σ =
100k

R8

=
100k

R17

, R =
10k

R3

=
10k

R12

and b =
100k

R2

=
100k

R11

Now we describe the memristor circuit given in Fig. (17). Here, Op-amp UM1A acts as
buffer and Op-amp UM1B acts in integrator mode whose output is v15 = − 1

RM1CM4

∫

v1dτ .
In Fig. (17), we can see that multiplier UM2 implements:

vUM2(t) = −v215
10

(7)

The factor of 10 is inherent to the AD633 and we refer to its datasheet for further infor-
mation. Multiplier UM3 in Fig. (17) implements

vUM3(t) = vUM2(t)

(

RM3 +RM4

10RM3

)

(8)

Op-amp UM1C in Fig. (17) is the current inverter that implements (when RM5 =
RM6):

im =
−v1(t)

RM2

+
vUM3(t)

RM2

(9)

Substituting for vUM2(t) from Eq. (7) into Eq. (8) and then substituting the result
into Eq. (9) we get,

im =

(

− 1

RM2

− v215

(

RM3 +RM4

100RM3RM2

))

.v1 (10)

Then the output of the amplifier in the coupler circuit becomes

vout = R26

(

1

RM2

+ v215

(

RM3 +RM4

100RM3RM2

))

.v1 (11)

Thus, the memductance parameter are changed using relations α = 1

RM2

and β =
(

RM3+RM4

100RM3RM2

)

. The coupling constant ‘c′ is changed using the relation c = R22

R19
. Here

we have kept R20 = R19 and R25 = R24. The output from these two Lorenz circuits are
fed into an oscilloscope and results are shown in Fig. (19a) and Fig. (19b). The indi-
vidual time series are seen in Fig. (19d) where as the variation of x1 with x2 is seen in
Fig. (19c) which is seen to be a simple, straight line. This indicate that the two signals
are almost same or synchronized. Later, the whole arrangement is connected via one
NIUSB − 6363DAQ (32 AI Channels (16 BNC), 2 MS/s) to a computer to acquire the
data generated by electronic circuit for further analysis. As the circuit uses resistance
with 5% tolerance, a bit of trial and error goes before taking the actual data for bringing
the two circuits to the exact as possible conditions.

The same procedure is adopted for the Hindmarsh-Rose equation and the resulting
diagram is given in Fig. (20). Due to the more complicated nature of the equation it
requires two TL084CN op-amps along with two multipliers AD633. The resistance and
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Figure 19: Oscilloscope pictures of Lorenz system at complete synchronization

Figure 20: Oscilloscope pictures of Hindmarsh-Rose system at complete synchronization

capacitors are as usual. Along with the two sets for the two equations we have coupling
circuit in middle of Fig. (18). For Hindmarsh-Rose electronic circuit[36, 37] we need to
scale the variable to bring them within electronically active region of Op-amp. Scaling
used for the present case is given as

u1,2 = x1,2, v1,2 =
y1,2

3
and w1,2 = z1,2

The time scaling used for the electronic circuit is Ts = 10−3sec. In the circuit, we have
Iref = I, a = 100k

R2
, b = 300k

R7
, r = 100k

R17
and s = R15

R13
= R15

R14
. The corresponding outputs

can be observed in oscilloscope screen. These are given in Fig. (20). The two attrac-
tors are shown in Figs. (20a), (20b) where as the time series is given in (20d) and the
synchronized signal appear in Fig. (20c). The whole arrangement is connected via one
NIUSB − 6363DAQ (32 AI Channels (16 BNC), 2 MS/s) to a computer to acquire the
data generated by electronic circuit for further analysis. Here also circuits use resistance
with 5% tolerance, a bit of trial and error goes before taking the actual data for bringing
the two circuits to the exact as possible conditions.
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Figure 22: Initial difference region indicating complete synchronization of two Hindmarsh-
Rose systems on (ex(0), ey(0)) plane. Figure is plotted for c = 0.1.6 Other parameter
values are kept at a = 3.0, b = 5.0, I = 3.05, s = 4.0, c0 = 1.6 and r = 0.005, α =
0.25 and β = 0.3. Value of ez(0) is fixed at 0.1
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4 Some observation

In our above analysis, we have seen two new aspects of synchronization phenomenon, when
the two systems are coupled via memristor. The first one is the intermittency with respect
to parameter variation. This is actually happening due to the generation of more than
one attractor in the coupled system, though original Lorenz or Hindmarsh-Rose do not
have such properties, To check this we have plotted the values of the Lyapunov exponents,
against the values of the co-ordinates (ex(0), ey(0)) as in Fig. (21) and Fig. (22). One can
visualize the extremely complicated nature of basin. Here we have shown synchronous
region(with blue)and asynchronous region(with color ranging from light green to red)
separately. On the other hand if we analyze the (u, x1, y1) projection of the attractor
then an interesting phenomenon is seen. It is depicted in Fig. (23 a). Here we clearly
see that we have a separate attractor as ‘u′ changes. So, when we are analyzing the
coupled system, there is a question of multiple attractor, and it is really responsible for
the aforesaid intermittency. As expected the Hindmarsh-Rose system also have similar
properties. Again from the plotting of the Lyapunov exponent values against (ex(0), ey(0))
we can see the complicated fractal basin structure, but the multiple attractor as ‘u′ varies
is shown in Fig. (23b). So the generation of multiple attractor dynamics is a novel output
of the coupling via memristor, and which in turn is responsible for the whole phenomenon.

5 Conclusion

In our above analysis we have analyzed a different form of memristor coupling between
two nonlinear oscillators and have observed a new type of intermittent synchronization.
It is very interesting to note that the intermittency is occurring with respect to the
parameter variation and also with the change of initial condition. This phenomena is
actually a reflection of multi-attractor generation and a continuous transition from one
attractor to another attractor. The situation has been studied both form the theoretical
and experimental point of view. From analytical perspective, we could only study the
local stability of the coupled system around the line fixed point. For the experimental
part, we have used op-amp combination for the realization of memristor. Due to the
memristor, the coupling is actually nonlinear. Recently, one of our colleague draw our
attention to two papers where memristors are used to couple two chaotic systems[38, 39].
But they did not discuss the dependency of such system on initial conditional differences.
This is where the present paper stands apart from those two papers. These type of events
require more investigations to reveal its potentiality.
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Figure 23: (a) Projection of Lorenz attractor on (x1, y1, u) plane when synchronization
occures for two different combinations of (ex(0), ey(0), ez(0)). Blue attractor is plotted for
(0.1, 0.1, 0.1) and green attractor is plotted with (0.2, 0.1, 0.1). All other parameters are
kept same as the previous values. (b) Projection of Hindmarsh-Rose attractor on (x1, y1, u)
plane when synchronization occurs for two different combinations of (ex(0), ey(0), ez(0)).
All other parameters are kept same as the previous values. Blue attractor is plotted for
(0.1, 0.1, 0.1) and green attractor is plotted with (0.2, 0.1, 0.1).

6 Appendix

6.1 Lorenz system

In Fig. (24), we have plotted the counter part of Fig. (8) of the main text. Like Fig. (8),
this figure also depicts the variation of Fs with colors in (α, β) plane for different coupling
strength (‘c′). Here Fs denotes number (ns) of combination of initial condition difference
between coupled Lorenz system for which synchronization can be archived over total
number (n) of such combinations taken for calculation(i.e., Fs = ns

n
). Fs values are

depicted by different color regions and these are stated in colormap diagram on right side
of the figure. We have also calculated detail variations of Fs for coupled system of Lorenz
equations on (α, β) plane for different values of coupling c. As evident from Fig. (24),
there is an anomalous behavior in variation of Fs in (α, β) plane with variation of ‘c. If
we follow the figure, we can see that maximum value of Fs ( reprsented with red color
lines and region) defines an island like structure and travels from top to bottom on left
hand side of these figures.

6.2 Hindmarsh-Rose system

In Fig. (25), we have plotted the counter part of Fig. (13) of the main text. Like Fig. (13),
this figure also depicts the variation of Fs with colors in (α, β) plane for different coupling
strength(‘c′). Here Fs denotes number(ns) of combination of initial condition difference
between coupled Hindmarsh-Rose system for which synchronization can be archived over
total number (n) of such combinations taken for calculation(i.e., Fs =

ns

n
). Fc values are
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Figure 24: Parameter region indicating fraction(Fc) of different initial condition difference
combination that reaches synchronization for a particular value of coupling ‘c′ on (α, β)
plane. Fig. (a) is plotted for c = 0.3 , Fig. (b) is plotted for c = 0.6, Fig. (c) is plotted
for c = 0.8 and Fig. (d) is plotted for c = 1.0. Other parameter values are kept at
σ = 10, r = 28 and b = 8
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Figure 25: Parameter region indicating fraction (Fs) of different initial condition difference
combination that reaches synchronization for a particular value of coupling ‘c′ on (α, β)
plane. Fig. (a) is plotted for c = 0.2 , Fig. (b) is plotted for c = 0.3, Fig. (c) is plotted
for c = 0.5 and Fig. (d) is plotted for c = 0.7. Other parameter values are kept at
a = 3.0, b = 5.0, I = 3.05, s = 4.0, c0 = 1.6 r = 0.005, and α = 0.1.
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depicted by different color regions and these are stated in colormap diagram on right side
of the figure. Then, we have plotted the fraction Fs of coupled Hindmarsh-Rose neurons
on (α, β) plane for different values of coupling c. Here color varies between red and blue
though green. Red denotes fraction value near to ‘0.9′ where as that of blue represents
fraction value near to ‘0.0′. Also green denotes fraction value near to ‘0.5′. As evident
from Fig. (25), there is also an anomalous behavior in variation of Fs in (α, β) plane with
variation of ‘c. If we follow the figure, we can see that maximum value of Fs (reprsented
with red color lines and region) defines an island like structure and travels from bottom
to top diagonally in these figures. Initially value of Fs is high for lower range of (α, β).
As ‘c′ is increased beyond the value 0.6, Fs is high for higher range of (α, β).
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Synchronous behavior of two coupled electronic neurons. Phys. Rev. E, 62:2644–2656,
Aug 2000.

[38] F. Corinto, A. Ascoli, V. Lanza, and M. Gilli. Memristor synaptic dynamics’ influ-
ence on synchronous behavior of two hindmarsh-rose neurons. In Neural Networks
(IJCNN), The 2011 International Joint Conference on, pages 2403–2408, July 2011.



On The Synchronization Of Synaptically Coupled Nonlinear Oscillators 29

[39] Mattia Frasca, Lucia Valentina Gambuzza, Arturo Buscarino, and Luigi Fortuna.
Implementation of adaptive coupling through memristor. physica status solidi (c),
12 (1-2): 206–210, 2015.


