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Abstract: In this paper, a detailed analysis of the behavior of Peter-De-Jong map
using the modified 0-1 and 3ST tests is presented. The results show that both tests
work well and effectively distinguish chaotic and regular motions in all the studied cases.
The simulation times necessary in all the cases are largely inferior to the ones obtained
using the 0-1 test which requires long data sets to perform well. We also performed some
comparisons between the 0-1 test and the 3ST test for the litigious cases for which the
decision by the 0-1 method is ambiguous, and we claim that the 3ST test can be a good
alternative to the 0-1 method. The 3ST test is a very efficient method and is particularly
useful in characterizing the quasi-periodic motion.
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1 Introduction

With the discovery of chaos phenomenon in 1963 by Edward Lorenz [19], the field of non-
linear dynamics has attracted much attention of researchers around the world, leading
thus to numerous publications [17, 1]. This phenomenon, owing to its remarkable proper-
ties such as ergodicity, extreme sensitivity to initial conditions and control parameters of
system, etc. [17, 23], is applying to diverse areas of science as electronic, biology, secure
communication, economy, meteorology, etc. Therefore, the determination of regular or
chaotic nature of dynamical systems becomes crucial.

Many tools to characterize chaos in these systems have been proposed since long time
[1, 2,9, 14]. We can sort them in two categories: the qualitative methods and quantitative
methods. As qualitative method, we can quote: the phase portrait and the bifurcation
diagram. This latter is obtained by representing the states of system when one of the
control parameters varies. These two techniques just allow us to have a certain idea on
the behavior of the system, and are based on visual perception that can prove to be
wrong. As quantitative method, we have: the SALI method (Small Alignment Index)
[21], the Largest Lyapunov Exponent [24], Entropy [13], the Fast Lyapunov Indicator
8], the Dynamic Lyapunov Indicator [25], the Delay Vector Variance method [15], and
so on. However, most of these techniques exhibit practical limitations since they fail
to detect chaos for a large class of dynamical systems (non-universality of the tests),
require the absolute knowledge of mathematical equations governing the dynamics of the
systems (impossibility to handle the experimental data), require a large amount of data
which is expensive in computational time, fail to analyze the time series contaminated
by noise, complexity of test algorithm, etc. Despite of a lot of efforts devoted, one of the
major challenges in the field of characterization of nonlinear dynamical systems remains
to propose a test that can overcomes all these limitations.

In a recent past, a new test allowing detection of regular or chaotic nature in deter-
ministic dynamical systems has been proposed by Gottwald and Melbourne, the 0-1 test
[10, 12]. It is a binary test which takes in input, the time series data of the deterministic
dynamical system and returns 0 or 1 according that the dynamics is respectively regular
or chaotic. It does not require the prior knowledge of mathematical equations governing
the dynamics of system and the phase space reconstruction which is quite complex [12].
In addition, it is robust to the presence of noise and it is easy to implement. The 0-1 test
has been successfully applied to diverse type of system [20, 22, 4, 5, 18] and its reliability
has been proved [16, 11]. However, the main disadvantages of this test are: it requires a
large amount of data to perform well and its algorithm is based on computing of several
multiplications and integrals which are expensive in computation time; it equally fails to
detect the nature of the systems when the data are oversampled; the 0-1 test does not
also allows distinction between periodic and quasi-periodic behaviors.

In order to overcome the drawbacks of the 0-1 test, two other new tests have recently
been proposed by Fouda and his coworkers. These tests are: the modified 0-1 test [6]
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and the Three-State test (3ST) [7]. Their reliability should be support by testing them
on large and different classes of dynamical systems. In this paper, these two methods
are clearly presented and extended to time series data generated by Peter-De-Jong map.
We use here this kind of map because it exhibits several complex types of attractors for
different set of parameters. The rest of paper is structured as follows: in Section 2, we
briefly study the modified 0-1 test. Section 3 is devoted to a detailed study of 3ST test.
The Section 4 is consecrated first to the presentation of the Peter-De-Jong map, then
we apply the modified 0-1 and 3ST tests to data generated by this map. The results
are shown and discussed in this section. Section 5 shows the speed performance of the
modified 0-1 and 3ST tests compared to the one of 0-1 test. Finally, Section 6 includes
the conclusion of this work.

2 Description of the modified 0-1 test

The modified 0-1 test [6] is a binary test that takes in input the sub-observable and
returns 0 or 1 according that the dynamics is respectively regular or chaotic. Here, the
sub-observable is defined by mapping exclusively the local maxima and minima (extrema)
of the observable. These extrema are computed by detecting the sign changes in the
first derivative of the observable. We recall that, the observable is the time series data
generated by the underlying dynamical system. This modification does not change the
dynamic of system. Therefore if the observable is regular, the sub-observable is also
regular and if it is chaotic, the sub-observable remains chaotic. In addition of all the
advantages of the traditional 0-1 test, the modified 0-1 test successfully detects chaos in
oversampled data [6]. The implementation of modified 0-1 test is given below [6]:

Given an observable ¢(j) with 7 = 1,2,--- , N, we first define the sub-observable (k)
with £k =1,2,--- , L < N, which is a vector consisting by the local maxima and minima
of the entire observable ¢(j). Then, we compute the translations variables p(n) and g(n)
of (k). They are defining as

p(n) =Y (k) cos(ke) (1)

k=1
and
q(n) = ¢(k)sin(ke) (2)
k=1
where ¢ € (0, 7) is the sampling frequency of the time series and n = 1,2,--- , L.

The plot of p — g diagram allows us to have a certain idea on the behavior of the system.
If the motion is a torus, the dynamic is regular. If it behaves like a Brownian motion, the
dynamics is said to be chaotic.
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The behavior of p(n) and ¢(n) can be characterized by computing the mean square dis-
placement (MSD) defined as:

L
M(n Z (k+mn) = p(k))* + (alk +n) — a(k))’ (3)

where n =1,2,---, L/10.

In order to remove the oscillatory component of M(n), the modified mean square dis-

placement is calculated as follows [12]:

D(n) = M(n) — Vose(n) (4)
where
Vi) = 2, ) )
and
o = Jin 73 0(h ©
k=1

Viose 1s the oscillatory component of M(n) and Ey the average of the sub-observable.

We will use Eq. (4) below to plot the MSD. When this latter is bounded in time, the
dynamics of the system is called regular whereas if it grows linearly in time, the dynamics
is said to be chaotic.

Finally, we compute the asymptotic growth rate K. of the MSD on which the test is
based. There are two methods to calculate K.: the regression method and the correla-
tion method. We will use the second method since it allows a better convergence of the
asymptotic growth rate. It is given by:

Ko cov (&, A) 7)
‘ var(§)var(A)

where £ =1,2,--- ,L/10 and A = D(1), D(2),---, D(L/10) are the vectors.

However for some isolated values of ¢ (resonances values), the test fails to detect the
dynamics of system. To avoid that, K. is computed for N, values of ¢ for a same parameter
value (N, = 100, is sufficient in practice); the final asymptotic growth rate K is computed
as the median of N, values of K,.. If K. = 0, the dynamics of the system is said to be
regular whereas if K.~ 1 it is known as chaotic.

Despite of the improvement of the 0-1 test, the modified 0-1 test does not allow to
distinguish between periodic and quasi-periodic motions. In order to overcome this limi-
tation, another test for chaos detection in discrete dynamical systems has been proposed;
it is the 3ST test.
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3 Description of the three state test (3ST)

The 3ST test [7] is another technique that allows chaos detection in discrete dynamical
systems. It is based on the pattern analysis of data series. It studies the distribution of
the system states in a data series as a function of time. The 3ST considers the properties
of periodic and quasi-periodic signal for determining whether the dynamics of a system is
regular or chaotic [7]. In addition to the afore-mentioned advantages of the 0-1 test, the
35T test has been developed to make a clear distinction between periodic, quasi-periodic
and chaotic behaviors; it has also been developed for real time application due to the
fact that its implementation most use addition and subtraction operators; and finally for
automating the detection of the period doubling route to chaos. The implementation of
3ST test is shown below [7]:

given an observable to be characterized z;(k) = ®(x(k)) with k € N, 2(k) = (21, 22, - -
,xpr)(k) the state vector, 1 < j < M; for determining its patterns, we define u; = g(z;)
which is the time series data sorted by ascending order with g a function; then we also
define v; = ¢(u;) = ¢(y(z;)) representing the distribution of indices outputting the initial
positions of the values of u; in x;.

In order to take into account the time dependence of v;(k, N) (/N being the length of time
series data), the largest slope (LS) is defined as pattern characteristic as follows:

LS(n) = max (vj(k+1,N)—v;(k,N)) (8)

1<k<N-1

It is then possible to use its mean square error ors(N, n) for chaos detection in time series
data as follows:

p

ors(Nm) = | 5 S(LSGNo + ) — T5)? (9)
with .
LS = %;LSUN@ +n) (10)

where N = pNy + n is the length of data series, Ny the integration step and p a natural
number different from zero. ors(N,n) measures the ability of a dynamical system to
generate new patterns as the time is increasing. n is the smallest observation duration
for the LS to be well evaluated and should verify the relation n << N. According to the
behavior of LS, ors(N,n) is bounded if the underlying dynamics is non chaotic. For this
purpose, we define

10g(1 + ULs(N, TL))
N =
p(N,n) log N

(11)

then
K(n)= lim wp(N,n) (12)

n——+00
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K is the asymptotic growth rate of the mean square error of LS. K is equal to zero in the
case of periodic and quasi-periodic motions and greater than zero in the case of chaotic
motion.

In order to distinguish periodic from quasi-periodic motions, the global derivative of
(N, n) is computed. Its sign can then allow distinguishing these two behaviors. This
global derivative is defined as:

m—1

A) = Tim > (u(Negs,n) — p(Ng, 1)) (13)

n—-+00 1

where Ny < N,,. N; is the smallest integration duration and N, is the greatest one. In
practice, choose the time delay n < N;/2 leads to good results. A is the periodicity index
and allows characterizing regular and chaotic dynamics. The 3ST test is based on its sign:
A(n) < 0 for quasi-periodic behavior, A(n) = 0 for periodic behavior and A(n) > 0 for
chaotic behavior. Thus, the 3ST as indicated by its name allows to have in output three
main parameters which are: I the cycle of periodic orbits, K the asymptotic growth rate
of the largest slope and A the periodicity index.

Moreover, 3ST like other chaos detection tools is extremely sensitive to small change
in the input time series. To make it more robust to the presence of noise, an absolute
threshold a has been introduced on the input time series such that two states (k) and
Z(j) are assumed to be different if and only if |Z(k) — Z(j)| > «. The effectiveness
of the studied tests is shown by applying them to time series data generated from the
Peter-De-Jong map.

4 Peter-De-Jong map: Application of the modified
0-1 and 3ST tests

The Peter-De-Jong map is a pair of difference equations suggested by Peter-De-Jong and
so named after him [3]. Tt is a chaotic system that appears simple, but exhibiting several
complex types of attractors, corresponding to different sets of parameters. The map is
described as:
{ Tny1 = sin(ay,) — cos(bxy,) (14)
Ynt1 = sin(ex,) — cos(dyy,)

where a, b, ¢ and d are the parameters of the system.

Below, different sets of these parameters are presented. For each set, we evolved the map
(Eq. (14)) and analyzed the obtained time series data through the modified 0-1 and 3ST
tests. The results are compared to those of the ordinary 0-1 test and phase portrait plot
as shown in Fig. 1 to Fig. 10 below. Also, the values of K by 0-1 test, K,.,q by modified
0-1 test, K3gr and A for 3ST are given for each set of parameters. We used an input
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Figure 1: Plot of (a) phase portrait, (b) p-q diagram for the modified 0-1 test, (¢) p-q
diagram for the 0-1 test, (d) mean square displacement for the modified 0-1 test and (e)
mean square displacement for the 0-1 test. The parameter values are: a = 2.033372,
b = —0.78980076, ¢ = —0.5964787, d = —1.7829015. K = 0.9974; K,,.,q = 0.9988;
Kagp = 0.8225: A = 0.0983.
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Figure 2: Plot of (a) phase portrait, (b) p-q diagram for the modified 0-1 test, (¢) p-q
diagram for the 0-1 test, (d) mean square displacement for the modified 0-1 test and (e)
mean square displacement for the 0-1 test. The parameter values are: a = 1.76, b =
1.66571, ¢ = —0.86114, d = 0.59714. K = —0.0055: Kpoq = —0.0668; Ksgp = 0.4537:
A= —0.0617.
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Figure 3: Plot of (a) phase portrait, (b) p-q diagram for the modified 0-1 test, (¢) p-q
diagram for the 0-1 test, (d) mean square displacement for the modified 0-1 test and (e)
mean square displacement for the 0-1 test. The parameter values are: a = 0.973894,
b= 1.66504, ¢ = —0.860796, d = 2.10487. K = 0.9937: K,oq = 0.9991: Kyep = 0.8211:
A =0.1015.
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Figure 4: Plot of (a) phase portrait, (b) p-q diagram for the modified 0-1 test, (¢) p-q
diagram for the 0-1 test, (d) mean square displacement for the modified 0-1 test and
(e) mean square displacement for the 0-1 test. The parameter values are: a = 2.07345,
b= 1.66504, ¢ = —0.860796, d = 2.10487. K = 0.9996; K,,.q = 0.9905; K357 = 0.8263;
A =0.0953.
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Figure 5: Plot of (a) phase portrait, (b) p-q diagram for the modified 0-1 test, (¢) p-q
diagram for the 0-1 test, (d) mean square displacement for the modified 0-1 test and
(e) mean square displacement for the 0-1 test. The parameter values are: a = 1.07345,
b = 2.785398, ¢ = 1.34786, d = 1.10487. K = —0.0033; K, oq = —0.00015; K357 = 0;
A=0.
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Figure 6: Plot of (a) phase portrait, (b) p-q diagram for the modified 0-1 test, (¢) p-q
diagram for the 0-1 test, (d) mean square displacement for the modified 0-1 test and
(e) mean square displacement for the 0-1 test. The parameter values are: a = 2.89027,
b= 1.5708, c = —0.314159, d = 2.10487. K = 0.9950; K,..q = 0.9821; K397 = 0.8241;
A = 0.0966.
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Figure 7: Plot of (a) phase portrait, (b) p-q diagram for the modified 0-1 test, (¢) p-q
diagram for the 0-1 test, (d) mean square displacement for the modified 0-1 test and (e)
mean square displacement for the 0-1 test. The parameter values are: ¢ = 1.7843, b =
0.5366543, ¢ = —0.7553879, d = 1.65469. K = 0.8975: K,pq = 0.9872; Ksgp = 0.8164:
A =0.0911.
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Figure 8: Plot of (a) phase portrait, (b) p-q diagram for the modified 0-1 test, (¢) p-q
diagram for the 0-1 test, (d) mean square displacement for the modified 0-1 test and
(e) mean square displacement for the 0-1 test. The parameter values are: ¢ = 1.7843,
b = 0.8574, ¢ = —0.975840, d = 0.65469. K = —0.0011; K,,.q = 0.0092; K357 = 0;
A=0.
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Figure 9: Plot of (a) phase portrait, (b) p-q diagram for the modified 0-1 test, (¢) p-q
diagram for the 0-1 test, (d) mean square displacement for the modified 0-1 test and (e)
mean square displacement for the 0-1 test. The parameter values are: a = 1.273574,
b= 28574, ¢ = —0.175345, d = 0.55469. K = 0.9972: K,oq = 0.9962: Ksgp — 0.8241;
A =0.0770.
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Figure 10: Plot of (a) phase portrait, (b) p-q diagram for the modified 0-1 test, (c¢) p-q
diagram for the 0-1 test, (d) mean square displacement for the modified 0-1 test and
(e) mean square displacement for the 0-1 test. The parameter values are: a = 0.76453,
b=1.66571, c=1.28357,d=0. K =0.00042; K,,,q = —0.00058; K357 = 0; A = 0.
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sequence of length N = 2000 for the 3ST algorithm and N = 10000 for the 0-1 and the
modified 0-1 tests.

The results show that for the cases of Fig. 1, Fig. 3, Fig. 4 and Fig. 6, the phase
portrait plot seems to be chaotic (Fig. 1(a), Fig. 3(a), Fig. 4(a), Fig. 6(a)). This chaotic
nature is confirmed by the Brownian motion of the p-q diagrams (Fig. 1(b),(c); Fig.
3(b),(c); Fig. 4(b),(c); Fig. 6(b),(c)), the linear growth of the MSD (Fig. 1(d),(e); Fig.
3(d),(e); Fig. 4(d),(e); Fig. 6(d),(e)), the parameters values K,,,q and Ko_; which are
approximately 1 for the modified 0-1 test and the 0-1 test as presented on these Figures.
Besides, the parameters values K3gp and Azspr by 3ST are greater than 0.

For the cases of Fig. 5, Fig. 8 and Fig. 10, the phase plot appears to be regular (Fig.
5(a), Fig. 8(a), Fig. 10(a)). This regular nature is confirmed by the torus motion of the
p-q diagrams (Fig. 5(b),(c); Fig. 8(b),(c); Fig. 10(b),(c)), the bounded behavior of the
MSD (Fig. 5(d),(e); Fig. 8(d),(e); Fig. 10(d),(e)), the parameters values K,,,q and Ky_q
that are close to 0 for the modified 0-1 test and 0-1 test. Also, the parameters values
Kssr and Azsr by 3ST are equal to 0.

In regard to the Fig. 7 and Fig. 9, the phase portrait plot does not appears to
be chaotic while the modified 0-1 test, the 0-1 test and the 3ST detect chaos for these
parameters. So for these cases, the phase portrait fails to detect chaos. We can explain
by the fact that it is based on the visual perception which can be wrong; also, the chaos
presented by the map for these parameters may be weak.

For the case of Fig. 2, the phase portrait plot seems to be regular; this regular nature
is also detected by the modified 0-1 and 0-1 tests. However both tests indicate the periodic
motion. The 3ST being less sensitive to the sequence of input times series generated by
the system, the value of the periodicity index is A3g7 = —0.0617, which may be interpreted
as quasi-periodic motion. This test is a very efficient method and is particularly useful in
characterizing the quasi-periodic motion.

To better characterize the behavior of the Peter-De-Jong map when a control param-
eter varies with the time, its global dynamics is valued using the modified 0-1 and 3ST
tests for parameter value a varying from —5 to 5, with b = —0.78980076, ¢ = —0.5964787
and d = —1.7829015. The results are compared with those of the 0-1 test and the bifur-
cation diagram as displayed in Fig. 11 below. As shown in Fig. 11, the results of the
modified 0-1 and 3ST tests are in good agreement with those of the bifurcation diagram
and the 0-1 test for most part of points in the range of variation of the control parameter.
Nevertheless in some short ranges at a ~ [—4, —3.8] and a ~ [1,1.2], the dynamics seem
to be litigious. It is difficult to take a decision regarding the dynamics of the system
by only visualizing the bifurcation diagram (Fig. 11(a)). The dynamics there might be
quasi-periodic or weakly chaotic. In these small ranges the 0-1 test detects a regular
dynamics (Fig. 11(b)) while the modified behaves as a weak chaos (Fig. 11(c)). The 3ST
detects quasi-periodicity in some points of these ranges (Fig. 11(e)).
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Figure 11: Global dynamics of the Peter-De-Jong map for control parameter a varying
from -5 to 5: (a) bifurcation diagram, (b) asymptotic growth rate Ko by 0-1 test, (c)
asymptotic growth rate K,,.q by modified 0-1 test, (d) asymptotic growth rate Kzsp by
3ST test and (e) periodicity index Agsr by 3ST test.
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5 Speeds analysis

For an efficient using of chaos detection methods for applications in areas of science, we
must be able to process the data in real time. For this purpose, we propose to compare
the processing speeds of the above studied tests for chaos detection. All the operations
are implemented using Matlab 7.9.0 (R2009b) on a personal computer equipped with an
Intel(R) Core(TM) i3-M370, 2.40 GHz CPU, running Windows 7.

In regard to the cases 1 to 10 (Fig. 1 to Fig. 10), the average simulation time for
each case is around 35s for the modified 0-1 test; 84s for the 0-1 test and 0.1s for the
3ST test. We notice that the computation time of the modified 0-1 test is 2.4 times lower
than the one of the 0-1 test and 350 times greater than the one of the 3ST test. So the
simulation time of the 3ST test is quite inconsiderable compared to those of others tests.
The simulation time of the modified 0-1 test is significantly reduced since the number of
data to be processed is reduced. For example, if the time series to analyze is a sinusoid,
we just process its maximum and minimum instead to process all points of the sinusoid.
Nevertheless, despite of fact that the computation time of the modified 0-1 test compared
to ordinary 0-1 test is considerably reduced, this time remains again heavy.

For the simulation time of global dynamics of the Peter-De-Jong map, we obtained
8064 s approximately 2.24 hours for the modified 0-1 test and 11139s approximately 3.0942
hours for the 0-1 test. Although this time is reduced for the modified 0-1 test, it still
remains quite large compared to the one of 3ST test that has been assessed to around
21s. Thus the 3ST test is expected to process experimental data in real time.

6 Conclusion

Chaos detection in dynamical systems is a nontrivial problem. In order to generalize
a method, it is important to prove its reliability. In this paper, a detailed study of the
behavior of Peter-De-Jong map using two chaos detection methods namely the modified 0-
1 and 3ST tests was performed. Regarding the modified 0-1 test, it consists to process only
the local maxima and minima of time series data rather than treat the entire observable
like the ordinary 0-1 test. The 3ST test is based on pattern analysis of time series data.
These two tests for chaos do not require the knowledge of the mathematical equations
governing the dynamics of system to be applied as well as the nature and the dimension
of the underlying vector field. To show the effectiveness and the reliability of these tests,
we must applied them to data generated by various dynamical systems. Therefore, in
this work we have applied them to time series generated from the Peter-De-Jong map.
The results showed that the modified 0-1 and 3ST tests perform well for all cases of
parameters. These two tests for chaos have then shown their applicability to this kind
of map. The paper also shows that the 3ST test can be a better alternative to 0-1 test
and classical methods as it detects quasi-periodic motion in the map where the others
tests fail. Based on the time that has allowed us to simulate the global dynamics of the
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Peter-De-Jong map, we can say that the 3ST can be used to process experimental data
in real time. In prospect, we plane to apply the 3ST test to real world data.
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or, (iv) (c=b)/(1—a) =0 and z_5,x_1 € R™.

Keywords: Three term nonlinear recurrence, Heaviside function, limiting behavior.

Manuscript accepted January 20, 2017.



Limits of Solutions of a Recurrence Relation 23

1 Introduction

Three term recurrence relations of the form
Yn = F(Yn-1,Yn—2), n € N={0,1,2,3,...},
arise in many studies of natural phenomena. A well known example is the relation
Yn = Yn—1+ Yn—2, n € N,

which is satisfied by the Fibonacci sequence {0,1,1,2,3,5,8,...}. When F is a continuous
function in the above recurrence relation, there are now numerous studies, but when F'is
discontinuous, relatively few studies are available (see e.g. [1-4]). However, (discontinu-
ous) on-off control functions such as

1, u <0 1, u >0
H(u):{—l u>O’G(u):{—1 u<0’ (1)
or
1, u < A
muw={ " 151 er @)

etc. are common and therefore it is of great importance to consider prototype models and
study their properties.
In this paper, we consider the following recurrence relation

Yn = AYn—2 + bH}\(ynfl) + ¢, n € N, (3)

where a € (0,400),b,¢c € R and Hy : R — R is the bang bang function defined by (2).
Clearly, given any initial pair (y_»,y_1) in R?, we can generate through (3) a unique real
sequence {y, }.— . Such a sequence is called a solution of (3) originated from (y_s,y_1).

There are many qualitative properties of this nonlinear recurrence which are worthy of
studying. Here, we are interested in the limit of the solution sequence {y, } - , originated
from R2.

As we will see below, there are only a few types of limiting behaviors for solutions of
(3) and we can also determine exactly the ’initial region’ from which each type of solutions
originate from.

Since there are four real parameters in the nonlinear model (3), the above precise
information may seem difficult. Fortunately, we may resort to linear recurrences and
transformations for help.

Indeed, let {yx}, , be real sequences that satisfy

Yok = QYoo +d, k€ N, (4)
Yokt1 = aYop—1 +d, kK € N, (5)

where a € (0,4+00) and d is a real number. Then the following facts are easily obtained
by induction.
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If a #1 and {y,} - , is a sequence which satisfies (4), then

1 — k+1
Yo = a1y o + (—“)d, k e N. (6)

1—a

If a #1 and {y,},- , is a sequence which satisfies (5), then

(1 —ak*h)

N.
T~ d, ke (7)

_ k+l
Yokt1 =@ Y1+

If a=1and {y,} - , is a sequence which satisfies (4), then

Yo = y—o+ (k+1)d, k € N. (8)

If a =1 and {y,},- , is a sequence which satisfies (5), then

Yok+1 = Y—1 + (k/’ + 1)d, k € N. (9)

Therefore, if b = 0 in (3), then it reduces to the linear recurrence relation
Yn = QYp—2+c¢, n € N, (10)

and its asymptotic behavior is quite trivial. Indeed, suppose a € (0,1). Then any solution
{yn}oo _, of (10) satisfies (4) and (5) for d = c. Hence by (6) and (7), any solution of (10)
tends to ¢/(1 — a). Suppose a = 1. Then any solution {y,}>> _, of (10) satisfies (4) and
(5) for d = c¢. Hence by (8) and (9), we may see that for any solution {y,}>2_, of (10),
lim,, y, = +o0 when ¢ > 0, lim, y,, = —00 when ¢ < 0 while yo, = y_2 and yo,4+1 = y—1
for n € N when ¢ = 0.

Suppose a > 1. Then a solution {y,}32 _, of (10) satisfies (4) and (5) for d = c¢. Hence
by (6) and (7), we may summarize its limiting behavior in the following table:

— +0 — —0
— —X — +00

Table 1:

—2 Y-1 Yon Yon+1
=c/(1—a) =c¢/(l—a) —c/(l1—a) —c/(1—a)
=c/(1—a) >c¢/(1—-a) —c¢/(1—a) — 4
>c/(l1—a) =c¢/(l—a) — +o0 —¢/(1—a)
=c/(1—a) <c¢/(l1—a) —c/(l—a) — —
<c/(l—a) =c¢/(l—a) — —0 —¢/(1 —a)
>c/(l1—a) >c/(l—a) — +o0 — +00
<c/(l—a) <c/(1—a) — —x — —00

(1—a) (1—a)

(1—-a) (1—-a)
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For instance, the second row states that if y_o =y = ¢/(1—a), then y, — ¢/(1 —a);
while the last row states that if y_5 < ¢/(1 —a) and y_1 > ¢/(1 —a), then lim,, ys, = —00
and lim,, y2,+1 = +00. We remark that the condition y_5 = y_; = ¢/(1—a), as can be seen
from (4) and (5), actually implies v, = ¢/(1 — a) for n € N. However, in this paper, we
only emphasize on limits and hence similar remarks in later discussions will be skipped.

Next, we assume that b # 0. Then by the transformation z,, = y,, — A, we see that (3)
is equivalent to
Tp = aTp—9 + bH(xp_1) + (c+ (a — 1)A), n € N, (11)

where H is the Heaviside function defined in (1). In particular, if @ = 1 and b # 0, then
(11) is reduced to

Ty = Tpo+bH(xp—1)+c, n€N. (12)
Furthermore, if @ € (0,1) and b > 0, or, @ > 1 and b < 0, then by the transformation
2y = l%acn, (11) is equivalent to
Zn =0azp—2+ (1 —a)H(z,—1) +d, n € N; (13)
while if a« € (0,1) and b < 0, or, @ > 1 and b > 0, then by the same transformation
zp = 5%2,, (11) is equivalent to
Zn =z, + (1 —a)G(z,—1) +d, n € N, (14)
where G is the Heaviside function defined in (1) and
d- 1;“(c+ (a—1))).

Therefore, we may turn our attention to the equations (12), (13) and (14). Since (14)
is similar to (13), we may further turn our attention to the following equation

Ty = aTp—o+bH(x,—1)+ ¢, n €N, (15)

which includes (12) and (13) by assuming the cases: (i) a =1,b >0, (ii) a = 1,b < 0, (iii)
a€ (0,1),b>0,or (iv) a>1,b < 0.

Henceforth, we will discuss the limiting behaviors of solutions of (15) under the four
different sets of conditions on a and b.

To state the corresponding results, it is convenient to introduce some notations. First
we set

S cEtb
+ — 1_@7
1 1—a"
+
A = J<n—l_a(cj:b)>,k;€N,
1—adr
af;f,g = ad'np+ T (c£b), k €N,

by = —k(cEb), keN.
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We will also set
R
a =gy, 0"y = ag 4,k € N.

Next, if I and J are real intervals, their cross product I x J will be denoted by I.J,
and we will assume that this product receives the priority attention in a mathematical
expression. For instance, if we set

R = (—00,0,R" = (0, 00),

then {RTRT,R™R ,R R",R R} is a partition of R%. Other subsets of the plane will
be introduced in the subsequent sections. Here we will employ the following notations

a+Q={a+zlze}
and
aQ) = {azx| z € Q}

for any € C R and a € R.

2 The Case where a=1and b > 0

Under the assumption that @ = 1 and b > 0, the limiting behavior of (15) only depends
on ¢ —band ¢+ b. Since ¢ — b < ¢+ b, we need to consider five cases (i) 0 < ¢ — b, (ii)
c+b<0, (i) c+b=0,(1iv)c—b=0,and (v) c—b<0<c+b.

Theorem 2.1. Suppose a = 1,b > 0 and 0 < ¢ —b. Then every solution of (15) tends
to +o0.

Proof. Let {z;};._, be a solution of (15). We first show that exists m > —2 such
that z,, € RT. Indeed, suppose to the contrary that z, < 0 for all &k > —2. Then
Xy = x_o+b+c for all k € N. One sees immediately from (8) and (9) lim,, ., ,, = +00,
which is a contradiction.

Next we assert that there exists m > —2 such that xz,,,x,,.1 € RT. Indeed, by the
previous discussion, there is mg > —2 such that z,,, € R". If 2,,,41 € RT, we are done.
Otherwise, from

Tmo+2 = Ty —b+c>—=b+c>0

we have z,,,.2 € RT. Repeating the argument, we either find m > mg such that
T, Tm+1 € R or one has that the subsequence ;o lies in R™ whereas ,,,,1ok+1 ¢ R™.
This shows that the subsequence {2, +2r+1} satisfies equation (4) or (5) for d = —b+ ¢
and hence lim 2,,,, 4 9x+1 = +00 > 0, a contradiction.
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Therefore, we may suppose without loss of generality that z »,z ; € R". Then by
(15) and induction, x,, € R" for all n > —2. Thus z, = x, 2 — b+ ¢ for n € N. In view
of (8) and (9), lim,, . 2, = +00. The proof is complete.

Theorem 2.2. Suppose a = 1,b > 0 and ¢+ b < 0. Then every solution of (15) tends
to —oo.

The proof is similar to that of Theorem 2.1 and hence skipped.

In the next result, we assume that a = 1,06 >0 and ¢+ b= 0. Then 0 = b, < b; <
<o < b, — +oo. If we let

c® = (bﬁabﬁﬂ], ke N,
then

CO_p4+cCR,

CH _pre=C*D k>1

and
R"=[Jc®.
k=0

Theorem 2.3. Suppose a = 1,b > 0 and ¢+ b = 0. Let {z,}2° _, be any solution of
(15). Then its limiting behavior can be summarized in the following table:

Table 2:
T_9 T_q condition g, Tont1
€ R™ € R™ — T2 — T
cR" eR™ — T_9 — —00
cR €eR* — -0 — T4

ceC® €0 0<s<k —x9 — —00
GC(k) GC(S) OSkaS — —X0  — Top_1

Proof. (i) Suppose (z_2,2_1) € R"R™. Then from (15) we see that

19 = T o+bH(z )+c=29+b+c=2 R,
xry = Z71+bH(Z0)—b:Z71+b+C:Z71ERi.

By induction, one may easily see that xq, = x5 and x5,,1 = x_; for all n € N.
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(ii) Suppose (z_2,2_1) € RTR ™. Then by (15),

19 = T o+bH(x )+c=29+b+c=2,€RT,
ry = Z71+bH(I0)+C:I71—b+C<$71ERi.

By induction, 25, = z_5 € R* and z5,,; € R~ for all n € N. Furthermore, by (5) and
(9) with d = —b+ ¢ = —=2b, lim,, x9,11 = —00 as required.

(iii) As in (ii), we may show in similar manners that (z_5,z_;) € R R* implies
lim x5, = —o0 and limxg, 11 = x_1.

(iv) Suppose (z 9,2 1) € CHWCE) where 0 < s < k. Then by (15),

o = I72+bH(I,1)+C:‘ri2—b+ceC(k)_b_'_CZC(}C*l)’
v = w+bH(zo)+e=a4—-btceCY—bte=0C0"Y,

and by induction, (s, T2s,1) € RTR ™. We may proceed as in (ii) to obtain our conclusion.
(v) Suppose (z_9,2_1) € C®C6) where 0 < k < s. Then by (15), if £ = 0, then

aco:ac,g—ka(ac,l)—kc:ac,g—b+c€C(0)—b+c§R’.
That is (z_1,20) € RTR™. If £ > 0, then

To = If2+bH(If1)+C=IQ—b+CEC(k)—b—l—c:C(kfl),
€Ty = l'fl‘i_bH(Io)—’—C:al‘il—b+C€C(s)_b_’_CZC(S*l)’

and by induction, (zox—1,72;) € RTR™. We may now proceed as in (ii) to obtain our
conclusion.
The proof is complete.

In the next result, we assume that ¢ = 1,6 > 0 and ¢ —b = 0 < ¢+ b. Then
0="0b5 >bf > >bf - —oo. If we let

D(k) = (bz+1ab;}a k € N,
then
DO 4+p+cCR,

D® 4 pyec=DED |>1,

and

R = O DW,
k=0

By methods similar to the proof of the Theorem 2.3, we may easily obtain the following
result.

Theorem 2.4. Suppose a = 1,b > 0 and ¢ —b =0 < ¢+ b. Let {z,}°° , be any

n=—2
solution of (15). Then its limiting behavior can be summarized in the following table:
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Table 3:
T_9 T_q condition g, Tont1
€R" €R" —> T2 —T_1
eR €R* — 2 9 — 400
cRT R — 400 — x4

eD® DO 0<s<k — a9, — 400
€ D®) € D®) 0<k<s — 40 — Xop 1

In the next result, we assume that ¢ = 1,6 > 0 and ¢c—b < 0 < ¢+ b. Then
by < by <---<b, = +ooand b > b >--- > bl — —oo. We may therefore use the
same notations C®) and D® in the previous two cases.

Theorem 2.5. Suppose a = 1,0 > 0 and ¢ —b < 0 < ¢+ b. Let {z,}32_, be any
solution of (15).

(i) If (x_—9,21) € R"TR™ U CcOCE U DWIDO where 0 < s < k and 0 < r < ¢, then
lim,, x5, = +o0 and lim,, z9, 11 = —00.

(ii) If (z_9,2-1) € RRT U Cc®C® U DWIDO where 0 < k < s and 0 < t < r, then
lim,, x5, = —00 and lim,, x5, 11 = +00.

Proof. (i) Suppose (z 9,2 1) € C®C® where 0 < s < k. Then by (15),

g = 2 o+bH@ )+c=29—b+ceC® —btc=CFD
1 = 2, +bH(x0)+c=2_4—b+ceC® —btc=0CC"Y,
and by induction, (2a,, 29,41) € R*R™. Suppose (z_s, 1) € DD® where 0 < r < ¢.
Then by (15), if » = 0, then
29 = x 94+bH(z 1)+c=z 9+b+ceD® +b+c=D"Y CRY,
T = Z71+bH(Z0)+C:Z71—b+C<Z‘71 <0,

ie., (zg,z1) € RTR™; while if » > 0, then

Ty = x,2+bH(x,1)+c:x,2+b+cED(”)—b—kc:D(”’l),
1 = ax_1+bH(xo)+c=x_1+b+ce DY —b4+c=DEY,

and by induction, (xo,, z2.41) € RTR ™.

Therefore, we may suppose without loss of generality that (z_»,2_1) € RTR ™. By
(15) and induction, we may then see that (xse,zs,11) € RTR™ for all n € N. Thus
Top = Top—o + b+ ¢ and 9,41 = x9p1 — b+ ¢ for n € N. In view of (8) and (9),
lim,, o0 T2, = +00 and lim,,_,o T2p11 = —00 as desired.

(ii) This case is similar to the case (i) and its proof is skipped.

The proof is complete.



30 Jiannan Song, Fan Wu and Chengmin Hou

3 The Case where a=1and b <0

Under the assumption that a =1 and b < 0, equation (15) is equivalent to
Tp = ATy +gf1(xn,1) +¢, neN,

where b = —b > 0 and H = —H. Hence this case is similar to (but not the same as)
that where b > 0 and a = 1. Indeed, under the assumption that b < 0 and a = 1,
the corresponding asymptotic behavior of (15) only depends on ¢ + b and ¢ — b. Since
c+b < c—b, we again have five cases: (i) c—b < 0, (ii) ¢ —b =0, (iii) ¢ + b = 0, (iv)
c+b<0<c—b,and (v) c+b> 0.

The ideas of the proofs of the corresponding asymptotic behaviors are also similar,
and hence some of the proofs in this section will be skipped or sketched.

Theorem 3.1. Suppose a = 1,0 < 0 and ¢ —b < 0. Then every solution of (15) tends
to —oo.

Theorem 3.2. Suppose a = 1,b < 0 and ¢+ b > 0. Then every solution of (15) tends
to +o0.

Theorem 3.3. Suppose a = 1,b < 0 and ¢ —b = 0. Let {x,}2° _, be any solution of
(15).

(i) If (x_9,2—1) € RTR™, then lim, x5, = _5 and lim,, x9,11 = x_;.

(i) If (x_2,21) e R"RTUR RTUR R, then lim, z, = —o0.

Proof. (i) Suppose (z_2,2-1) € RTR™T. Then by (15), 29 = 2.9 — b+ ¢ = z_o,
ry = x4 — b+ c = x4, and by induction, we may easily see that x5, = x5 and
Top+1 = v—1 for n € N.

(ii) Suppose (z_2,2-1) € R*R™. Then z 5 € (b;,b; 4] for some k € N. By (15)
and induction, (2251, 22x) € R"R™. Suppose (z_2,z_1) € R"R*. Then z_; € (b, b}, ]
for some k£ € N. By (15) and induction, (g, zor41) € RTR™. Therefore, we may sup-
pose without loss of generality that (z_5,2_1) € R™R™. Then by (15) and induction,
(Ton, Tony1) € RTR™ for all n > —2. Thus x, =z, o + b+ ¢ for n € N. In view of (8)
and (9), lim, o z, = —00.

Similar to Theorem 3.3, we may show the Theorem 3.4 as follows.

Theorem 3.4. Suppose a = 1,b < 0 and ¢+ b = 0. Let {z,}2° _, be any solution of
(15).

(i) If (z_9,2z_1) € R"R7, then lim, 25, = x_5 and lim, 25,1 = _; for all n € N.
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(ii) If (x_9,21) € R"R-UR " RTUR'RT, then lim, z,, = 0.
In the next result, we assume that a« = 1,b < 0 and ¢+ b < 0 < ¢ — b. Then
by >by >+ >b, = —oc0and bj <bf <---<bf — +o0. Let
(k) &)
C = (bk+labk}aD = (bZab;+1}

for kK € N, then

R —| c® R+ = 5%,

Theorem 3.5. Suppose a = 1,b < 0,¢+b <0 < c¢—b. Let {z,}°°_, be any solution
of (15).

(i) If (x_9,2_4) € ¢ uD"EY UR R where 0 <s < kand 0 <r <t then
lim, z,, = —oc.

(i) If (x_9,2_1) € cPDY UD"TY URYRY where 0 <k < sand 0 < t < r, then
lim, x,, = +o0.

Proof. (i) Suppose(z_s,2_1) € MDY where 0 < s < k. Then as in the proof of
Theorem 2.5, by (15) and induction, (xs, xes11) € R"R ™. Suppose (x_9,2_1) € D"t
where 0 < r < t. Then by (15) and induction, (z2,_1,x2,) € R™R™. Therefore, we may
suppose without loss of generality that (x 5,2 ;) € R"R™. Then by (15) and induction,
(Ton, Tony1) € RTR™ for all n > —2. Thus x, = z,-2 + b+ ¢ for n € N. In view of (8)
and (9), lim,, ., z, = —0c0.

(ii) This case is similar to the previous case (i) and its proof is skipped. where b=
—b > 0 and H = —H. Hence this case is similar to (but not the same as) that where
b > 0 and a = 1. Indeed, under the assumption that b < 0 and a = 1, the corresponding
asymptotic behavior of (15) only depends on ¢+ b and ¢ — b. Since ¢+ b < ¢ — b, we again
have five cases: (i) c—b <0, (i) c—=b=0, (ili) c+b=0, (iv) c+ b <0< c—10, and (v)
c+b>0.

The ideas of the proofs of the corresponding asymptotic behaviors are also similar,
and hence some of the proofs in this section will be skipped or sketched.
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4 The Case where a € (0,1) and b > 0

Under the assumption that a € (0,1), we have a_ = (¢—0)/(1—a) < (c+b)/(1—a)
Thus we need to consider five cases (i) 0 < o, (ii) 0 = v, (iii) - < 0 < vy, (iv) 0
and (v) 0 > ay.

.
dt

Theorem 4.1. Suppose a € (0,1),b > 0 and «, < 0. Then every solution of (15)
tends to avy.

Proof. Let {x;},- , be a solution of (15). If @, > 0 for all & > —2, then from
(15), x = axp—9 — b+ ¢ for all k& € N. One sees immediately from (6) and (7) that
lim,z, = (¢ —b)/(1 —a) = o~ < ay < 0, which is a contradiction. Thus there is
m > —2 such that x,, € R~. Then we may show as in the proof of Theorem 2.1 that
there exists m > —2 such that z,,,z,,+1 € R™. Therefore, we may suppose without loss
of generality that z 5,2 1 € R™. Then by (15) and induction, z, € R~ for all n > —2.
Thus z,, = ax,_2 + b+ ¢ for n € N. In view of (6) and (7), lim, o 2, = . The proof
is complete.

Theorem 4.2. Suppose a € (0,1),b > 0 and a— > 0. Then every solution of (15)
tends to «v_.

The proof is similar to that of Theorem 4.1 and hence is omitted.

In the next result, we assume that a € (0,1),0 >0 and o, = 0. Then 0 = a; < a; <
<o < ay, — +oo. If we let

AW = (a;,a;,,], k€N,

and
ACY = gAO —p 4= (=b+¢,0),
then
AR D = AW — b+ ¢, ke N,
ACD C R,
and
R" = O A®),
k=0
Theorem 4.3. Suppose a € (0,1),b > 0 and 0 = ay. Let {z,}2° _, be any solution

of (15).
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(i) If (x_9,2-1) € R"R7, then lim, z,, = 0.

(ii) If (2 9,2 1) € AW AGURYR™ where 0 < s < k, then lim,, 72, = 0 and lim,, 29,1 =
a.

(iii) If (v 9,2 ) € A®AG) U R"R* where 0 < k < s, then lim, 7, = a_ and
hmn Top+1 = 0.

Proof. The proof of (i) is quite easy in view of the proofs of Theorems 2.3, 2.4 and
2.5, and hence skipped. To see (ii), suppose (z_5,2_1) € A®AE) where 0 < s < k. Then
by (15),

To = ax,2+bH(x,1)+c:ax,2—b+ceaA(’“)—b+c:A(’“’1),
T, = ax,l—ka(xo)—kc:ax,l—b+cEaA(s)—b+c:A(s’1),

and by induction, (g, Tos41) € AR DAED C RYR™. Therefore, we may suppose
without loss of generality (z_2,2-1) € RTR ™. Then by (15) and induction, (2, Tani1) €
RTR™ for all n > —2. Thus x9, = aZ9, 2+ b+ c and 29, = axy, 1 — b+ c. In view of
(6) and (7), lim,, o0 T2, = 0 and lim,,_,oo T9,+1 = @ as desired. Finally, the proof of (iii)
is similar to that of the case (ii) and hence omitted.

In the next result, we assume that a € (0,1),b >0 and o = 0. Then 0 = af > a] >
> a = —oo and (—00,0) = " lar, 1, ay).-

Theorem 4.4. Suppose a € (0,1),b > 0 and o = 0. Let {x,}°> _, be any solution

n=—2
of (15). Then its limiting behavior can be summarized in the following table:

Table 4:
T_o T4 condition Ton, Toni1
eR* eR' -0 =0
€ (a,+x) =0 —ay —0
eR™ € R" -0 = a,
€ (—,af] =0 -0 —a,
€[0,+00) € (—00,0) —ay —0
€laf,ar) €lajy,af) 0<k<s —a, —0
€laf,a) =al, 0<k=s —a, —0
= a5, € (af,af) 0<k=s -0 = ay
€ (a7 4,05) €(ajq,a0f) 0<k=s —ay —0
= a5, €lay,af) 0<k=s+1 —0 —ay
€ (a4,0;) =al, 0<k=s+1 —a, —0

E(GLI’GZ) E(a;rl,aj) 0<k=s+1 —0 — Qg
E[GLMI) €laf,af) k>s+1 -0 —a,
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Again the proof of Theorem 4.4 is similar to those of Theorems 2.3, 2.4 and 2.5, and
hence skipped.

In the next result, we assume that a € (0,1),b > 0 and o < 0 < «,. Then 0 =

ag < a; < -+ <a; — +ooand 0 = af > af > -+ > af — —oo. Therefore, if

let A® = (a;,a,.,] and B® = (af,,af] for k € N and ATV = aA©® — b+ ¢ and
BEY =aBO® 4 b+ ¢, then

aA®) —b4c=A"D ¢B® 4 p4 =BV | eN,

ACY C R*’B(*l) CRT,

and

W:GMWR:OEU
k=0 k=0

Theorem 4.5. Suppose a € (0,1),b > 0 and a— < 0 < ay. Let {z,}>_, be any
solution of (15).

(i) If (z 9,2 1) € AWAS U BOBO URTR™ where 0 < s < k and 0 < r < ¢, then

lim,, 9, = a4 and lim,, 9,11 = _.

(ii) If (z_ 9,2 1) € APWA® U BMB® UR R where 0 < k < s and 0 < t < r, then
lim,, 9, = a— and lim,, 9,11 = .

Proof. Suppose (z_5,2_1) € A® AG) where 0 < s < k. Then by (15),
xg = ar 9+ bH(x 1)+c=ax 3—b+céeE aA® —p 4= AR
r1, = ar +bH(zg)+c=ar 1 —b+ccad® —b+c=AC"Y,
and by induction, (za,, Toey1) € AF VAN € RYR™. Suppose (z 5,2 ;) € BMBW®
where 0 < r <t¢. By (15), if r =0, then
g = ar_o+bH(x_1)+c=ar_o+b+ceE aB® +bp+c=B"YCRT,
1 = ar_1+bH(xg)+c=ar_1 —b+c< —b+c<0,
i.e., (xg,z1) € RTR™; while if > 0, then
xg = ar_o+bH(zx_1)+c=arx_o+b+ceE aB" 4+ b+ ¢= B
1, = ar +bH(zg)+c=ax 1 +b+ccaBY +b+c=BEY,
and by induction,(xg,, T9,11) € RTR™. Therefore, we may suppose without loss of gener-
ality that (z_2,2_1) € RTR ™. Then by (15) and induction, (z2,,Z2,+1) € RTR™ for all
n > —2. Thus zy, = arg,—2 + b+ c and x9,41 = ax9,—1 — b+ ¢ for n € N. In view of (6)

and (7), lim, o T2, = a4 and lim, o T, 41 = a— as desired.
The conclusion (ii) is similar to (i) and its proof is omitted.
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5 The Case where a > 1 and b < 0

Under the assumption that a > 1 and b < 0, we have a«— = (¢—b)/(1—a) < (c+b)/(1—a) =
a,. We therefore need to consider five cases: (i) oy < 0, (ii) 0 = ay,(iiil) a- < 0 < ay,
(iv) 0 = @, and (v) 0 < «a_. Again, the conclusions below are quite similar to those
above and their proofs are skipped.

Suppose a > 1,b < 0 and ay < 0. Then 0 = aj > af > -+ > af — ay, a_ =

+ + + _ - - -
Ao <lgq g < "<y j =04, 0p =ag, >0 1 > >0, , —> o and
oo oo oo

_ + ot _ + + _ - -
(a4,0) = U[%Haak ), (o, cp) = U(aa,,kaaa,,kﬂ] = U[aa+,k+1aaa+,k)~
k=0 k=0 k=0

Theorem 5.1. Suppose a > 1,b < 0 and oy < 0. Let {z,}22_, be any solution of
(15). Then its limiting behaviors can be summarized in the following tables 5 and 6.

Table 5 ( (9,2 1) € R*\{(a;,0) x (@, a;) U (o, ay) X (aq,0)}) :

T 9 T Top, Ton4+1

€ (—oo,ay) € (—00,a4) — —00 — —
= ay €(—x0,ay) —ay ——0
€ (-0, ay) =y — —00 —ay

= ay = ay — oy > ag

€ (o4, +00) € (ay,+00) — +oo — +00
€ (ay,+0) =ay — 400 — +00
=y € (ag,+00) — +o0 — 400
€ [0, +00) €(a_,ap) — 400 — 400
€ (a_,ay) eRT — 400 — +00
€ (a; ;o8] =0 — 400 — 400
€ (ag,+0) € (—o0,a-) — +00 — —
€ (ag,af] =a — 400 — —00
€ (—oo,a-) € (ay,+00) — —00 — +00
=a_ € (a4, 0] — —00 — 400
€(a,a, 4) = — —00 — 400
€ (af,+0) =a_ — 400 —a-

=a_ eR* —a- = +00

=a; = —a. = +00
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Table 6 ((z_2,2_1) € (a4,0) X (a_, a4 ) U (—,ay) X (4,0)):

T_ o T4 condition g, Tont1
€ lag,1af) € (af a0 1] k<s — 400 — 400
€ (ak++1aa;) € (a27757az775+1 k=s — 400 — +00
— ak++1 € (a;r,,sa a;r,,sﬂ) k=s —+ +00 — =
= alc++1 = a;r,,sﬂ k=s — 400 —
€ [a,jﬂ, ay) € (a;r,,sa a;r,,sﬂ) k=s+1 — 400 — —0
€ (alc++17 ay ) = a;r,75+1 k=s+1 — 400 —a_
= Oy = g1 k=s+1 — +o00 — -0
€ lag,,:ay) €l ,af ] k>s+1 —+4o0 — —o0
< (a;rﬂk’ a;r—Jchl] < [a;rla a:) k<s — —0 — +00
€ (a;l,lw a;r,,lwrl) € lag,y,a7) k=s — —00 — 400
= a;rf,chrl € (a:+1a a:) k=s — Q- — +00
= a;r,,kﬂ = a:ﬂ k=s - —00 — 400
€ (g Oo_pa1] € (apy,ad) k=s+1 — +o00 — 400
€ (a;r,,lw a;r,,lcﬂ) =ag, k=s+1 — —0c0 — 400
= 0o = a,; k=s+1 —a  — +o0
€ a«i,ka a;r,,kﬂ] € lagyy,al) E>s+1 —+00 — 400
Table 7:

e’ T—1 Ton Tont1

€ (—00,0) € (-00,0) — -0 ——x©

€ (=00,0) =0 ——00 —0

=0 € (—00,0) —0 — —00

= = — 0 — 0

cR* € R* — 400 — 400

€eR" =0 — 400 — 400

=0 €RY — 400 — 400

€eR" € (a,0) — 400 — 400

€ (a-,0) €R" = fo0  — 400

cR* € (—oo,0.) — 400 — —00

€R" =0 — 400 — o

€ (—oo,ae) €RT — —00 — +00

= eR" —a.  — +oo

In the next result, we assume that @ > 1,b <0 and o < ay =0. Then a,, > a, ;>
>y, g — - and

o

(a—,0) = (a0, 11> 00, 2)-
k=0
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Theorem 5.2. Suppose a > 1,b < 0 and a; = 0. Let {z,}°°_, be any solution of
(15). Then its limiting behaviors can be summarized in the above table 7.

In the next result, we assume that a > 1,0 < 0 and o < 0 < . Then 0 = af <
af <---<af >apand0=aqay; >a; >--->a, = a_. Let

G(k) = (ak+7 alc++1]7 H(k) = [al;rla GE)
for £ € N, then
(07 OZ+) = U G(k)a (O[,, O) = U H(k)
k=0

k=0

Theorem 5.3. Suppose a > 1,b < 0 and a— < 0 < ay. Let {x,}52_, be any solution

n=—2
of (15). Then its limiting behaviors can be summarized in the following tables 8 and 9.

Table 8 ((z_9,2_1) € [ag, +00) X (—00, | U (=00, ] X [ag, +00)):

T2 T—1 Ton Ton+1
(0, +00) (—00,) — 400 — —00
ay (—o0, ) —ay — —00
(o4, +00) - — 400 — a_
ay a_ — oy —a
(—o0, ) (a4, +00) — —00 — +00
(—o0, ) ay — —00 = ay
a_ (g, +00) —a. — 40
. ay — o = ay

Table 9( (z_5, 2 1) € R®\{[ay, +00) X (—o0, | U (=00, ] X [y, +00)}):

T_9 T_q condition s, Tont1

R~ R~ — -0 — —0
(—oo, ] (0,cy) — —00 — —0
(0, aey) (—o0, ] — —00 — —0
(0,a]] 0 — —00 — —00
G®) H®) kE<s - -0 — -0
H™ G® t<r — —00 — —00
R* R* — 400 — +00
[a4, +00)  (a_,0) — 400  — +00
(a_,0) [y, +00) — 400  — +00
0 R* — 400 — +00
(af,+00) 0 — +00 — +00
G" H®) s<k — 400 — +00

H) G® r<t — 400 — +00
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Table 10:
) T—1 Ton, Tont1
eRT e R" — 400 — +00
€ R™ € R™ - -0 — —0
€ (0,ay) eR™ — —00 — —00
eR € (0,a4) — —00 — —0

€ (ag,+00) € (—00,0) — 400 — —o0
€ (—00,0) € (ay,+o0) ——00 — 400

=y € (—00,0) —ay ——x
€ (—00,0) =ay — —00 = ay
€ (ag,+o0) =0 — 400 —0
=0 € (agy,+o0) —0 — 400
=0 = o4 —0 — g
= a4 =0 —ay  —0
In the next result, we assume that @ > 1,b < 0 and & = 0. Then 0 = af < af <

- <af — ay and

(0,a4) = Ukoak’akJrl

Theorem 5.4. Suppose a > 1,b < 0 and 0 = a_. Let {z,}°°_, be any solution of

(15). Then its limiting behaviors can be summarized in the above table 10.

In the next result, we assume that a > 1,0 < 0 and 0 < a—. Then 0 = ¢, < a; <
<, o, a=al g <ay <o <Ay o Qp, Qp =gy > Gy, > >
a, , — a_ and
+>

ZUE‘;O(@;}@;&J (a-, o) Uk olag_ g an k+1 U/?éo[a;+,k+1aa;+,k)~

We also need to break up R? into six different parts: (a) I'y = [a_,00)?, (b) 'y =
[oz+,oo) X (—O0,0é,), (C> I's = (—oo,oz,) X [Oé+,OO), (d> Iy = (O?a*) X (a,,our), (e)
I5 = (a,a;) x (0,a), and (f) Tg = R*\ U_, T\

Theorem 5.5. Suppose a > 1,b < 0 where 0 < «_. Let {z,,}°° _, be any solution of
(15). Then lim,, z,, = —o0 if (z_2,2_;) € I's, else its limiting behaviors can be summarized
in the following table:
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Table 11 ((z 9,2 1) € U, T):

L2 T condition a9, Tonit
(a_, +00) (v, +00) S 100 = 400
- (a—,+00) S-S to0
(Oéf, -|—OO) o_ oo S a
= a- — o = a
(OZ+, —|—OO) (—OO, O[,) S fo0 — —o0
T (0,0 — fo0 — —00
Gy R~ S, g
(—o0,a) (s, +00) S o0 S oo
(ar, ) o — —00  — 400
(—o0, ay ] o S S
(0, g (O, 541500, ) 0<k<s — —00 —o0
(ag , apyi] (o, 511 F—s+1 — - —a,
(ay, , ay 4] (Gos i1 0nsy) k=511 — —00 — o0
(0, 0] [0y 611500, s) k>s+1 — —00 — o0
[a;+,lc+1’ a;+ ]c) (a;7 a;+1] 0<s<k ——00 — —
a;+ k+1 (a;, a;d] k=s — Qg = —00
(a;+v’f+1’ a;mc) (ay %11] k=s — +00 — —00
[G;+,Ic+1’ a;+,lc) (ag,a,.q] k<s S roo — —o0

6 Concluding Remarks

39

Since we have derived the exact relations between the initial pair (x_s,x_1) with the
limiting behaviors of the solution {x},- , of (15) originated from it, we may make some

interesting observations. For instance,

e in case a = 1 and b > 0, a solution {zy},_ , of (15) converges if, and only if,
c+b=0andz s=2 1 €R ,or,c—b=0andz , =2, € RT;

e in case a = 1 and b < 0, a solution {zy},_ , of (15) converges if, and only if,
c—b=0andr y=2_;€R" or,c+b=0andz_y=2_, € R;

e in case a € (0,1) and b > 0, a solution {zx},- , of (15) converges if, and only
if, (i) ay < 0, (i) @~ > 0, (iii) @y = 0 and z_9,2_; € R7; or, (iv) a— = 0 and

T_9,2_1 €RT.

e in case a > 1 and b < 0, a solution {3}~ , of (15) converges if, and only if, (i)
ay <O0andz o=z 1=ay; ({))a_>0andz y=2 1 =a_.
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We may also make assertions on the limiting behaviors of subsequences {zax}pe
and {Zog41},e, of solutions {zy},- , of (15). These and others can be made by going
through the previous results one by one, and are not listed here since they do not offer
any new theoretical information.
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obtain the threshold condition for the onset of horseshoe chaos. Threshold curves are
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1 Introduction

Over the past decades, a large number of analytical, numerical and experimental studies
have been carried out on linearly damped nonlinear oscillator systems with an effort to
understand the various features associated with the occurrence of chaotic behaviour [1-
10]. Recently there have been attempts to study the effect of external periodic forces in
certain nonlinearly damped nonlinear systems [11-25].

Horseshoe is the occurrence of transverse intersections of stable and unstable mani-
folds of a saddle fixed point in the Poincaré map and is a global phenomenon. In general,
the existence of horseshoe does not imply that typical trajectories will be asymptotically
chaotic. However the orbits created by the horseshoe mechanism display an extremely
sensitive dependence on initial conditions and possibly exhibit either a chaotic transient
before settling to stable orbits or strange attractor. Its appearance can be predicted an-
alytically employing the Melnikov technique. Recently this method has been applied to
certain nonlinear systems [5-11,13-19]. Nonlinearly damped Duffing-vander pol (DVP)
oscillator under the influence of narrow band frequency modulated (NBFM) signal con-
sidered in the present paper is of the form

i+vya(1—ah)|zf " —a’r + B2 = f(coswt — gsin Qt sinwt) (1)

where v > 0, , B, w, {2, p and f are constant parameters. DVP oscillator equation (Eq.1)
serves as a basic model for self excited oscillations in Physics, Engineering, Electronics,
Biology, Neurology and many other disciplines [1-8]. Recently the NBFM signal has been
applied to certain nonlinear systems to investigate some nonlinear phenomena such as
homoclinic bifurcations, stochastic and vibrational resonances etc. [26-29]. Our objective
here is to explore the effect of NBFM signal on horseshoe chaos in Eq.(1) using both
analytical and numerical techniques. In our present analysis, we use Melnikov analytical
method to study the influence of NBFM signal on homoclinic orbits in Eq.(1).

2 Analytical results

In order to apply the Melnikov method to Eq.(1) we consider the system

o=y (2a)
;= ar+ B2 +ely (1 —2®)yly|P ' + flcoswt — gsin Ot sinwt)] (2b)

where € is a small parameter. The unperturbed part of the system (Eq.2) with ¢ = 0 has
one saddle point (z*,y*) = (0,0) and two center type fixed points (z*,y*) = (j:iﬁ,()).
The two homoclinic orbits connecting the saddle to itself are given by

W= (2n (1), yn(1)) = (j:a\/% sechar, :FOZQ\/% sechar tanhar), T=1t—ty (3)

The Melnikov theory [1, 2, 30] allows us to calculate the Melnikov function M (ty) for a
classes of perturbed system for which homoclinic or heteroclinic orbit is known either ana-
lytically or numerically. M (ty) is proportional to the distance between the stable manifold
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(W) and unstable manifold (W,,) of a saddle. When the stable and unstable manifolds are
separated then the sign of M (ty) always remains same. M (t,) oscillates when W, and W,
intersects transversely (horseshoe dynamics). The occurrence of transverse intersections
implies the Poincaré map of the system has the so called horseshoe chaos.

From Eq.(2), the Melnikov function is worked out to be

+o0 +oo
M=(ty) = —7/ lyn|P ! (1—aj) dr +f/ ypcosw(T +tg) dr
I 0
-5 yn cos(Q —w) (T + to) dr + 5 yp cos(Q +w) (T + 1) dr (4)

Let w; = (2 —w), wy = (2 +w) and Gy = fg/2

.. the Eq.(4) becomes,

“+o00 —+o00
Mi(to) = —7/ |yh|erl (1 — aci ) dr + f/ ypcosw(T +to) dr
+00 +oo
-Gy / ypcoswy (T +tg) dr + Gy / Yp COSwo (T + tg) dr (5)

= I + Iy + I3 + 1,

(i) Evaluation of I

From Eq.(5), we have

L o= — / g P (1= a2) dr
_ —7/ g [P d7+7/ g [P a2 dr
= Iy + 1o

The evaluation of the integrals Iy, and [15 gives the following results.
M
I ANE p+2 p+1
I, = —~(a?)Pts [ 2 p|l&eL= 2=
w=etrt (5) m PR

p+3
3 2\ 2 +2 p+3
Iy = '7(042)p+3 <E> B {]?T’ pT}
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where B(m,n) is the Euler Beta function which can be easily evaluated in terms of the
Euler Gamma function. The relation connecting the Beta and Gamma function is

L(m)l'(n)

Blm.n) = ['(m +n)

(7)
where I'(m) denotes the Euler Gamma function
['(n) = / e "z tdu, n >0 (8)
0

(ii) Evaluation of I,

From Eq.(5) we have,

I, = f/ yp cosw(T +to) dr

o0
= f/ yn(cos wT coswty — sin wT sinwty) dr
—0o0

o0 o0
= fcoswiy / yp coswTdr — f sinwt / yp, Sin wrdr
= ]21 + I22

After the evaluation of the integral 51, the integral value of I5; = 0. The value of integral
155 is worked out to be

o 2
Iy = =fsinwt / o? \/% sechar tanh a7 sin wrdr

2
= j:\/%fﬂw sech B—:] sin wtg

Therefore,
I, = j:\/%fﬂw sech B—:] sin wty 9)
(iii) Evaluation of I3
From Eq.(5) we have,
I; = -G, /oo yp coswy (T + to) dr
= -G /00 Yn(cos wiT coswity — sinwy T sin wytg) dr
= -G /00 Yp COS W1 T cos witodr + G4 /00 Yp Sin w1 T sin wy todT

= ]31 + I32
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The integral value of I3; is zero. The value of integral I35 is worked out to be

(o]
I3y = Gl/ Yp SiN w1 T sin wytodr

[ee)

o0
2
I3, = —Gysinwity / o’ \/%sechozT tanh ar sinw;Tdr

2
= FGi \/jmul sech [E] sin wytg
8 2
2 w1l .
I3 = FG41y/ =7w; sech [—] sin wi to
8 2a

Therefore,

(iv) Evaluation of I,

Like the evaluation of I3, the integral value of I, is obtained as

2
1, = £G4/ =7wsy sech [@] sin wato
8 2

Therefore, Eq.(5) becomes

M*(t)) = A+ B + C fsinwty+ D Gysinwity £ E Gy sinwaty

where
12 Ex p+2 p+1
= — 2p+2 — -
4= eyt 5] B[Pt
&3
_ o ayerd |27 glpt2Zpts
B o= eyt |37 B[P
Cc = 2 stech{—w]
N 8 2a
2 Q—
D = - 7 7(Q — w) sech {W(Q—aw)}

3 Numerical results

45

(10)

(11)

(12a)

(12b)

(12c¢)
(12d)
(12e)

(12f)

In this section we investigate the effect of NBFM signal on horseshoe chaos both analyt-
ically and numerically in the system (Eq.2) with the frequencies 2 = w and € # w cases

respectively.
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3.1 Effect of NBFM signal on horseshoe chaos for G; = 0 and
O=w

For G; = 0 and w = €, the Eq.(12) becomes,
M*(ty) = A+ B + C fsinwtg (13a)

The necessary condition for the occurrence of horseshoe chaos is

2\ * (a2)P+3 p+2 p+1] 2 , [p+2 p+1 Tw
rzim=0(5) Sa B e P e (5
(13b)
The sufficient condition requires the existence of simple zeros of M(ty). Equality sign
in Eq.13(b) corresponds to tangential intersections. In Fig.1, we plotted the threshold
curve for horseshoe chaos in the (f,Q(= w)) plane for « = 1.0, = 5.0,7 = 0.4 and
various p values.

1.0

Figure 1: Melnikov threshold curves for horseshoe chaos in the (f, (= w)) plane for
the system (Eq.2) driven by NBFM signal for various p values. The values of the other
parameters in Eq.(2) are « = 1.0, 8 = 5.0,y = 0.4 and g = 0.0.

Below the curve, no transverse intersections of stable (W:) and unstable (W) man-
ifolds of the saddle occurs and above the curve, transverse intersections of stable (W)
and unstable (W) occurs. Just above the Melnikov threshold curve, onset of cross-well
chaos is expected. We have verified the analytical prediction by directly integrating the
Eq.(2) using the fourth-order Runge-Kutta method. As an example, Fig.2 shows the part
of the numerically computed stable and unstable orbits in the Poincaré map for f = 0.1
and f = 0.3 with p = 0.5 and 2 = w = 1. The unstable manifolds are obtained by
integrating the Eq.(1) in the forward time for a set of 900 initial conditions chosen around
the perturbed saddle point. The stable manifolds are obtained by integrating the Eq.(1)
in reverse time. For f = 0.1 the two orbits are well separated. In this parametric regime,
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Figure 2: Numerically computed stable and unstable manifolds of the saddle fixed point
of the system (Eq.2) driven by NBFM signal for (a) f = 0.1 and (b) f = 0.3 with
p = 0.5. The values of the other parameters in Eq.(2) are « = 1.0,8 = 5.0,7 = 0.4 and
Q=w=1.0.

one may expect periodic behaviour. For f = 0.3 we can clearly notice transverse inter-
sections of orbits at three places (Fig.2(b)). In this region, it is possible to have either
asymptotic chaos or transient chaos followed by asymptotic periodic behaviour.

In order to know the nature of the attractors of the system near the horseshoe threshold
value we have further numerically studied the Eq.(1) and the onset of cross-well chaos.
Fig.3 shows the bifurcation and the corresponding maximal Lyapunov exponent diagrams
for p = 1.0 and p = 2.0 with ¢ = 0.0. From Fig.3, the onset of cross-well chaos are
found to occur at f = 0.12334 for p = 1.0 and f = 0.09674 for p = 2.0. The analytically
predicted Melnikov threshold values (fy;) for p = 1.0 and p = 2.0 are 0.125 and 0.09754.
The analytical prediction is in good agreement with the actual numerical analysis of the
system.

3.2 Effect of NBFM signal on horseshoe chaos for G; # 0 and
O=w

First we consider the effect of NBFM signal on horseshoe chaos in the system (Eq.2) by
fixing the value of g and thereby varying f. For 2 = w, we have D=0 in Eq.12(e) and the
Melnikov function given by Eq.12(a) becomes,

M*(tg) = A+ B + C fsinwty+ E Gy sin 2wt (14a)

The necessary condition for the occurrence of horseshoe chaos is

f>fu=(A+B+EG)/C (14D)
(or)

f<fi=(A-BFEG)/C (14c)
where the superscripts sign '+’ and '—’ correspond to the homoclinic orbits W+ and W~

respectively.
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Figure 3: Bifurcation and the corresponding maximal Lyapunov exponent diagrams for
the system (Eq.1) driven by NBFM signal for (a-b) p = 1.0 and (c-d) p = 2.0. The values
of the other parameters in Eq.(1) are « = 1.0, =5.0,7 = 04,9 = 0.0 and 2 = w = 1.0.
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Figure 4: Melnikov threshold curves for horseshoe chaos in the (f, (= w)) plane for
the system (Eq.2) driven by NBFM signal for four p values. The values of the other
parameters in Eq.(2) are « = 1.0,8 = 5.0, = 0.4 and g = 0.1.
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Figure 4 shows the threshold curves for the occurrence of horseshoe chaos in the
(f,Q(= w)) plane for Q@ = w, a = 1.0, =5.0,7 = 0.4, g = 0.1 and various p values. In
the regions a and e both M™*(ty) and M~ (¢y) change sign and the transverse intersections
of stable and unstable parts of W and W~ occur. M™ () alone changes sign in the region
b and hence transverse intersections of orbits of W' occur. In region ¢, no transverse
intersections of both stable and unstable manifolds of saddle occur. In the region d,
transverse intersections of (W, ) and unstable (W) alone take place. We verified this by
direct simulation of the system (Eq.2). As an example, Fig.5 shows the part of stable and
unstable orbits in the Poincaré map for four values of f chosen in the regions a, b, ¢ and
d with @ =w =1, g =0.1 and p = 2.0. Transverse intersections

1 . 2 :
p=(;o\ i (@) p=20 (b)/'g
A= (%
1 f=0.15 L f=0.02
-2 0 2 2 0 2
X

X

B
255=20 o ¥ =20
— | \ f%‘a.__x
0.0 % - 0.0 :

25 . o7l
) 0 2 07 0.0 07

Figure 5: Numerically computed stable and unstable manifolds of the saddle fixed point
of the system (Eq.2) driven by NBFM signal for four values of f chosen in the regions a,
b, ¢ and d with p = 2.0 and g = 0.1. The values of the other parameters in Eq.(2) are
a=10,=5.0,v=04and Q2 =w=1.0.

of stable and unstable branches of both the homoclinic orbits W= and W can be
clearly seen in Fig.5(a) for f = 0.15 which falls in the region a. In Fig.5(b) we see the
intersections of W and W, orbits alone at one place for f = 0.02 (region b) while for
f = —0.008 (region ¢) no transverse intersection of orbits occur. This is shown in Fig.5(c).
For f = —0.04 (Fig.5(d)) which corresponds to the region d, branches W, and W, alone
intersect.

Next we analyze the effect of NBFM signal on horseshoe chaos for a fixed value of f

and thereby varying g. The necessary condition on g for M (ty) to change sign is

G, >Gh,=(A+B+Cf)/E (15a)

G, <Gt =(-A-BTFCf)/E (15b)
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Figure 6: Melnikov threshold curves for horseshoe chaos in the (g, (= w)) plane for
the system (Eq.2) driven by NBFM signal for four p values. The values of the other
parameters in Eq.(2) are « = 1.0, =5.0,7=0.4, and f =0.2.
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Figure 7: Numerically computed stable and unstable manifolds of the saddle fixed point
of the system (Eq.2) driven by NBFM signal for five values of ¢ with p = 2.0. The values
of the other parameters in Eq.(2) are « = 1.0, =5.0,7 =04 f =0.2 and Q2 = w = 1.0.
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Figure 8: Melnikov threshold curves for horseshoe chaos in the (g, (= w)) plane for
the system (Eq.2) driven by NBFM signal for four p values. The values of the other
parameters in Eq.(2) are « = 1.0,8 = 5.0,7 = 0.4 and f = 1.0.

Figure 6 shows the Melnikov threshold curves for horseshoe chaos in the (g, Q2(= w))
plane for f = 0.2 with four values of p. For p = 2.0, we have verified the above analytical
results by direct simulation of the system (Eq.2). Figure 7 shows the part of stable and
unstable orbits in the Poincaré map for five values of g chosen in the regions a, b, ¢, d
and e with @ = w =1 and f = 0.2. Then we fixed f = 1.0 above the threshold values
for all the values of p with ¢ = 0.0 and studied the effect of modulating term by varying
g. Figure 8 shows the Melnikov threshold curves for f = 1.0. When f = 1.0 and g = 0.0
transverse intersections of stable and unstable manifolds of saddle occur for a range of
w (see Fig.1). This is represented by the straight line in Fig.8. When g is switched on
even for small values of g, transverse intersections suddenly disappear. That is horseshoe
chaos is suppressed. This occurs for a range of values of g.

3.3 Effect of NBFM signal on horseshoe chaos for G; # 0 and
O#w

In the previous section we studied the effect of NBFM signal on horseshoe chaos for the
case of {2 = w. In this section, we consider the case () # w. For this case, we cannot write
the necessary condition for the occurrence of horseshoe chaos similar to Eq.(14) or (15).
However the occurrence of horseshoe chaos can be studied numerically measuring the
time 737 elapsed between the successive transverse intersection. 7, can be determined
from Eq.(12). Figure 9 shows the variation of 1/7']\%[ versus f for w = 1.0, Q = /2,
a =1.0,8 =5.0,v =04, g = 0.1 and four values of p. Continuous curves represent
the inverse of first intersection time 1/7;; of stable and unstable branches of homoclinic
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Figure 9: Variation of 1/7']\%[ versus f for ¢ = 0.1, w = 1.0, @ = v/2 and four values of p.
The values of the other parameters in Eq.(2) are « = 1.0, = 5.0 and v = 0.4.
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orbits W*. Dashed curves correspond to the orbits of W~. Horseshoe chaos does not
occur when 1/73; is zero and it occurs in the region when 1/73; > 0. In Fig.9, when
the value of g is fixed at 0.1, 1/75; are zero for 0 < f < 0.35792 for p = 0.1 (Fig.9(a)),
0 < f < 0.13785 for p = 0.5 (Fig.9(b)), 0 < f < 0.01935 for p = 1.0 (Fig.9(c)) and
hence no horseshoe chaos occurs in this interval of f. For the other values of f, 1/ T]\j/[[ are
nonzero, that is, horseshoe chaos occurs. Figure 10 shows the plot of 1 /Tj\jf[ against ¢ for
a=10,8=50v=04f=02w=10and Q =2 In Fig.10, 1/7;; are zero for
0 < g <0.25227 for p = 0.1 (Fig.10(a)) and 0 < g < 0.03458 for p = 0.5 (Fig.10(b)). For
other values of g, 1/7;; are nonzero.

4 Conclusion

The study of the effect of NBFM signal on horseshoe chaos is carried out in nonlinearly
damped DVP system (Eq.2). Both analytically and numerically we studied the effect of
NBFM signal on horseshoe chaos in DVP system (Eq.2). Applying Melnikov analytical
method we obtained the threshold condition for onset of horseshoe chaos, that is, trans-
verse intersection of stable and unstable branches of homoclinic orbits. Threshold curves
are drawn on different parameters spaces. We demonstrated the effect of the parameters
f,9,8 and p on the dynamics of the system (Eq.2).

When the damping exponent (p) increases from small values, the threshold value
decreases for onset of horseshoe chaos. The introduction of nonlinear damping term
affects the various nonlinear behaviours such as period doubling route to chaos, crises,
threshold values for the horseshoe chaos etc. For typical parametric values, we have
shown the suppression and enhancement of horseshoe chaos due to the effect of nonlinear
damping and NBFM signal. Analytical prediction of horseshoe chaos is found to be in
good agreement with numerical simulation of the system (Eq.2). In the present work, we
studied the effect of NBFM signal on horseshoe chaos in system (Eq.2) with symmetric
potential. It is important to study the effect of nonlinear damping and NBFM signal with
three different asymmetric potentials . These will be investigated in future.
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